Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints

Abstract : This paper develops a general solution framework based on aggregation techniques to solve NP-Hard problems that can be formulated as a circulation model with specific side constraints. The size of the extended Mixed Integer Linear Programming formulation is generally pseudo-polynomial. To efficiently solve exactly these large scale models, we propose a new iterative aggregation and disaggregation algorithm. At each iteration, it projects the original model onto an aggregated one, producing an approximate model. The process iterates to refine the current aggregated model until the opti-mality is proved. The computational experiments on two hard optimization problems (a variant of the vehicle routing problem and the cutting-stock problem) show that a generic implementation of the proposed framework allows us to out-perform previous known methods.
Type de document :
Article dans une revue
European Journal of Operational Research, Elsevier, 2017, 258, pp.467 - 477. 〈10.1016/j.ejor.2016.09.051〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01410170
Contributeur : François Clautiaux <>
Soumis le : mardi 31 janvier 2017 - 14:10:18
Dernière modification le : mercredi 25 avril 2018 - 15:43:54
Document(s) archivé(s) le : lundi 1 mai 2017 - 14:13:15

Fichier

two_ida.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Clautiaux, Sa¨ıdsa¨ıd Hanafi, Rita Macedo, Emilie Voge, Cláudio Alves. Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints. European Journal of Operational Research, Elsevier, 2017, 258, pp.467 - 477. 〈10.1016/j.ejor.2016.09.051〉. 〈hal-01410170〉

Partager

Métriques

Consultations de la notice

335

Téléchargements de fichiers

109