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Looking for Busy Beavers.

A socio-philosophical study of a

computer-assisted proof.

Liesbeth De Mol∗

elizabeth.demol@ugent.be

Abstract

“Young man, in mathematics you don’t understand things, you just get used to
them”

John von Neumann

1 Introduction

What exactly is the impact of the computer on mathematics? If one were to be-
lieve some of the advocates of computer-assisted mathematics “computers [are]
changing the way we do mathematics” [8]. This alleged change concerns a shift
in perspective on mathematical knowledge and the way it is attained, a change
brought about and made explicit through the computer. Mathematicians like
Borwein and Bailey [9, 10], Seiden [41] and Zeilberger [46] have emphasized
on several occasions that the increasing significance of computer-assisted math-
ematics makes it more and more clear that quasi-empirical or experimental
methods must be included and be taken more seriously within the mathemati-
cal discourse, that mathematics has more in common with the empirical sciences
than is usually believed. They question the traditional ideas on mathematical
certainty, proofs, rigor and understanding. Also, within the philosophy of math-
ematics, (examples of) computer-assisted mathematics (are) is mainly discussed
in the context of work that can be placed in the tradition of Polya and Lakatos,1

work that emphasizes the significance of the practice of the mathematician,2 the
fallibility of mathematics and the significance of (quasi-)heuristics opposing the
more traditional idea that mathematics is without history, without change, that
mathematics is no more than a body of absolute and certain knowledge.3

∗This research was supported by the Fund for Scientific Research, Flanders, Belgium.
1See for example [24] and [37].
2See for example [21]
3See for example [45]
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The idea that computer-assisted mathematics has this kind of impact on math-
ematics and its philosophy has of course also been opposed. Indeed, several
philosophers and mathematicians have argued for several different reasons that
the computer does not have this kind of epistemological impact on mathemati-
cal methods. In the end, theoretically, it is not capable of anything we were not
already capable of before.4

The aim of this paper is to contribute to the question concerning the impact of
the computer on mathematics, a question which, in our opinion, will only gain
in importance in the future. Here, I will focus on computer-assisted proofs.
This work is to be situated in a larger research project that aims to develop
a more systematic and complete approach towards computer-assisted or, as we
will identify it in the remainder of this paper, mechanized mathematics.5 Such
approach is still lacking in the literature.
One important part of such a systematic approach towards mechanized math-
ematics is the micro-analysis of (well-known and less well-known) examples
throughout the history of mechanized mathematics, starting from (but not nec-
essarily ending with) the accounts of the mathematicians themselves. There
are already some examples in the literature of relatively detailed case studies
like MacKenzie’s socio-history of the four-color theorem [33], probably the most
famous example of a computer-assisted proof, and Van Bendegem’s account of
the Collatz problem [6], which is a typical example of a problem studied with
the help of the computer. In this paper we will look at a relatively unknown
example of a computer-assisted proof, i.e., the solution of the Busy Beaver prob-
lem for the class of Turing machines with 2 symbols and 3 resp. 4 states. The
Busy Beaver game (or competition) for a certain class of Turing machines (with
m states and n symbols) is to find the Turing machine which prints out the
maximum number of 1s before halting when started from a blank tape (See Sec.
2.1 for the technical details).
As is stated in the title of this paper, the case analysis should be regarded as a
socio-philosophical analysis. This means here that I will start from a relatively
detailed (micro)-analysis of a specific example of a computer-assisted proof, trac-
ing the immediate consequences and problems as they are interpreted by the
mathematician(s) her/himself during the process of proving and in the com-
munication of the proof. I will then discuss the most important philosophical
problems related to computer-assisted proofs in the context of the case analysis.

1.1 What are computer-assisted proofs?

Within the literature one can easily determine different kinds of computer
“proofs”. There is, for example, an important difference between a (1) mecha-
nized probabilistic proof that shows that a certain very large number x is prime,
using the Miller-Rabin primality test, (2) visual proofs as they for example occur

4See for example, [5, 13, 16, 30, 43, 44] Note that this does not necessarily mean that they
oppose the idea of mathematics being not that absolute body of truths.

5I follow Derrick Henry Lehmer [27] here, a computer pioneer and number theorist, who is
one of the main inspirators of the present work.
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in fractal geometry (see for example [36]), (3) McCune’s proof of the Robbins
algebra conjecture which relies on an automated theorem prover [34] and (4)
Hales’ proof of the sphere packing problem [19].
In this paper, unless indicated otherwise, we will use the term computer-assisted
proof (CaP for short) in the sense of Derrick H. Lehmer (see e.g. [26]), who was
involved with one of the first true computer-assisted proofs [29]. A CaP is a
proof that proves a theorem that practically could not have been (or, thus far,
has not been) proven, re-proven or verified by human mathematical reasoning
alone. I.e., (certain parts of) both the process that results in the proof as well
as the proof itself must be humanly impractical. As a consequence, these proofs
are, practically speaking, not surveyable by humans. Furthermore, the proof is
also machine impractical in that, besides the programming, certain parts of the
proof could not have been done by the computer. In this sense, we use the term
computer-assisted proof rather than computer proof. These proofs typically in-
volve the verification of a large number of cases by the computer, although the
work of the computer is not restricted to this verification. A well-known (and
probably the most famous) example is the proof of the four-color theorem (4CT
for short) by Appel and Haken [1, 3].6

This definition is not intended as a once-and-for-all-given definition. It should
be understood as an instrument to evaluate and demarcate certain computer
applications which, when analyzed, can in their turn change the semantic con-
tent of CaP’s.

1.2 Why Busy Beavers?

There are two main reasons that motivate my choice for this specific case anal-
ysis.
The first and least important one is that in the present case study the proofs
and the problem itself can be relatively easy explained. Unlike, for example, the
computer-assisted proof of the sphere packing problem, the “proofs” are simple
enough to be explained up to a relatively high level of detail. The case-study is
thus ideal for the intended micro-analysis.
The main reason for selecting this case is that it is not well known. In the con-
text of CaPs, and, more generally, mechanized mathematics one focuses mainly
on the more famous examples and neglects the more “normal” ones. Within the
literature on CaP’s the discussions are usually restricted to one of the following
three examples, in order of increasing popularity:

(a) The non-existence of a finite projective plane of order 10 by Lam, Thiel
and Swiercz [15]

6Note that several examples from the literature that are quite frequently considered as
examples of computer proofs are excluded by this definition. For example, if a computer finds
a counter-example to a certain conjecture, this does not count as an example of what is here
understood under computer-assisted proof as, once the counterexample has been found, the
human can easily check that it is a counterexample, and thus disprove the conjecture.
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(b) The sphere packing problem by Thomas Hales [19]

(c) The 4CT by Appel and Haken [1, 3] and its alternative proofs by Robertson
et al [40] and Gonthier [18].

(a) is mostly only mentioned without any real discussion, it is yet another
example of a CaP, while (b) and especially (c) have given rise to several different
heated debates, going from the question whether such proofs are really proofs
to the problem of the refereeing of such proofs.
Of course, one cannot deny that e.g. the 4CT is more interesting than the Busy
Beaver example to be studied here since, on the one hand, the result is a proof
of an old mathematical problem with a long history, and, on the other hand, it is
not situated within the context of theoretical computer science (as is the case for
the present case study). The same goes for the other two. However, even if (a),
(b) and (c) have already been studied in the literature and are more interesting,
this is no reason not to be interested in less well-known and interesting examples
of CaPs. First of all and generally speaking, if one restricts the attention to
only the “famous” examples, this might lead to an all too restrictive view on
CaPs. Secondly, by drawing the attention to the fact that there are more than
three CaPs, one draws the attention to the fact CaPs are not as abnormal as
one might believe and one thus counters the argument that, as there are only a
few CaP’s, they cannot be that important. And abnormal they are not. A very
simple search on the following terms: Computer proof (C.Pr.), Machine proof
(Mach. Pr.), Mechanical proof (Mech.Pr.), Computer-assisted proof (CaP) and
Automated proof (Aut.Pr.) in MathSciNet and DBLP, two on-line databases,7

resulted in Table 1:
Although these numbers are not overwhelming and it is furthermore not the

C. Pr. Mach. Pr. Mech. Pr. CaP Aut.Pr. Tot.
DBLP 196 42 24 22 72 356

MathSciNet 73 16 53 161 79 382

Table 1: Overview of the number of papers in MathSciNet and DBLP that mention
computer proofs.

case that all of these proofs are CaPs in the sense understood here, they show
that one cannot simply discard the significance of CaPs on the basis of numbers.
Although they have not yet become a “normal” method of mathematics, they
are more important than is usually believed.
Thirdly, by focusing on the less well-known examples, it becomes possible to
study the impact of the computer not only on the level of the great innovations
of mathematics – the famous examples – but also on the level of the “everyday”
practice of the mathematician, which is not redundant if one accepts the view
that mathematics cannot be reduced to its great achievements.

7MathSciNet is a database for mathematics in general
(http://www.ams.org/mathscinet/search.html), whereas DBLP is a computer science
database (http://www.informatik.uni-trier.de/ ley/db/).
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Finally, it is not because one has seen one very important CaP that one has
seen all. By studying more and more examples of CaPs it becomes possible to
tackle certain more general questions more exactly. What kind of problems can
be solved with CaPs? What kind of methods are used and in what way are they
different from other methods? How are CaPs communicated and perceived?
What kind of techniques are used to convince the fellow mathematicians of the
proof? Is there an evolution in the way CaPs are made and formalized?...These
kind of questions allow to get a more concrete view on what CaPs are and in
what sense they really differ from other proofs. These general questions cannot
be answered properly if one restricts ones attention to only three CaPs.

2 Looking for Busy Beavers

In a paper titled On non-computable functions [38] Tibor Radó proposed an
example of “the phenomenon of non-computability in its simplest form”, an
example which is now known as the Busy Beaver function Σ(m),m ∈ N. He
provided the following motivation for formulating and studying the problem
[39]:

Let us note that our main objective is to observe the phenomenon of
non-computability in its simplest form, so that we can use the insight
we achieve to see better what tasks we can delegate to computers.
Actually, the comments to be presented here originated with the
writers studies relating to the optimal design of automatic systems,
and specifically with efforts to use computers to the limit of their
capabilities for this purpose.

In other words, the computer not only plays a fundamental role in the solution
of specific cases of the problem, but also led to the formulation of the problem.
Furthermore, as an example of an uncomputable problem, it is situated in the
context of the theory of computing and is thus, on the theoretical level, closely
related to the computer.
Recall that, given Turing’s thesis or any other logically equivalent thesis, a
problem is considered non-computable (or recursively unsolvable) iff. there is
no Turing machine that is able to compute it. One of the more famous examples
is the halting problem, i.e., the problem to decide (compute) for any Turing
machine whether or not that machine will halt.
The fact that a problem is non-computable in general, does not mean that
every instance of the problem is also non-computable. I.e., it is not because
there is a Turing machine with a non-computable halting problem that every
Turing machine has a non-computable halting problem. One can thus search
for strategies that allow to decide a certain generally undecidable problem for
specific classes of “decidable” Turing machines. This is the goal Radó, and,
after him, several other researchers, set himself: to compute the Busy Beaver
function Σ(m) for specific ms. It was soon understood that the computer would
be an indispensable helper.
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After a preliminary section (Sec. 2.1), defining some of the basic notions used
here, we will give a (relatively) detailed account of computer-assisted proofs
that Σ(3) = 6,Σ(4) = 13 (Sec. 2.2). This will be followed by a discussion of
three of the typical features of these proofs (Sec. 2.3). In the next section (Sec.
3), we will confront these proofs with some of the fundamental epistemological
problems related to computer-assisted proofs.

2.1 Some Preliminaries

A (standard) Turing machine T consists of a read-write head and a two-way
infinite tape. A blank is denoted by the symbol 0. To start with, the tape
contains a finite initial configuration, possibly empty, on an otherwise blank
tape. In its initial state (state 1), the head reads the leftmost symbol of the
initial configuration.8 The machine is said to halt when it reaches the halting
state H. T is formally defined by the finite set of states Q plus the halting state
H, a finite set of symbols Σ = 0, 1, ... and a transition function f : Q x Σ →
(Σ x {L,R} x Q). The transition function f determines for any state qi ∈ Q
and any symbol sj ∈ Σ what the machine should do when in state qi, reading
the symbol sj . I.e., if f(qi, sj) = (si,j , Di,j , qi,j) then, if T is in state qi, reading
symbol sj , T replaces sj by si,j , moves in direction Di,j = {L,R} (L stands for
left, R stands for right) and goes to state qi,j . In what follows, an instruction
of a Turing machine will be represented by the quintuple (qi, si, si,j , D, qi,j).
Let HT (m, 2) be the class of Turing machines with m states and 2 symbols that
halt when started from a blank tape. Then, for T ∈ HT (m, 2) let σ(T ) resp.
s(T ) denote the number of symbols different from 0 left on the tape resp. the
number of computation steps before T halts. Let Σ(m) be the maximum σ(T )
and S(m) the maximum s(T ) with T ∈ HT (m, 2).

Definition 1 The Busy Beaver problem is the problem to determine Σ(m) for
any m ∈ N

Definition 2 The maximum shift number problem is the problem to determine
S(m) for any m ∈ N

Both problems were proven to be uncomputable by Radó [38].9 Note that
computing specific values Σ(m), S(m) for specific n comes down to solving a
special case of the halting problem for the class of machines with n states as
one needs to be able to determine the subclass HT (m, 2). Table 2 gives an
overview of the known values in the Busy Beaver competition.

8Of course, if the initial configuration is empty, the head starts at some arbitrary square,
reading 0.

9Radó only considered 2-symbolic Turing machines. The reason for this is that any n-
symbolic Turing machine can be simulated or reduced to a 2-symbolic Turing machine. This
was proven by Shannon. In current research on the Busy Beaver problem, one also considers
Busy Beaver functions for classes of Turing machines with the number of symbols m > 2. See
for example [35]. We will not consider these generalized Busy Beaver problems here.
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m S(m) Σ(m) Source
1 1 1 Trivial
2 4 2 Mentioned by Radó 1962
3 21 6 Radó and Lin (1965), Brady (1983), Kopp (1981)
4 107 13 Brady (1983), Kopp (1981)
5 ≥ 47 176 870 ≥ 4098 Marxen and Buntrock (1990)
6 > 2.5× 102879 > 4.6× 101439 Terry and Shawn Ligocki (2007)

Table 2: Overview of the current result in the Busy Beaver competition

2.2 Determining Σ(m)...

[...] when the writer wanted to find a certain highway on an automobile trip,
he received the following directions [...]: “Drive straight ahead on this road;

you will cross some steel bridges; and after you cross the last steel bridge,
make a left turn at the next intersection.” Luckily, the unsolvable problem

implied by this advice was resolved by a member of the construction crew who
volunteered the information that “after you cross the last steel bridge, there

isn’t another steel bridge until you reach Richmond, 130 miles away.”
Tibor Radó, 1962

In [38], Radó pointed out that the case with m = 1 trivial and that the case
m = 2 was computed during a seminar. For any Σ(m), S(m) with m > 2 la-
borious and lengthy proofs, including long computations seemed unavoidable.
The reason for this is that the number of Turing machines with 2 symbols and
m states grows exponentially fast for increasing m. Indeed, the size of the class
of 2-symbol Turing machines with m states is equal to (4m+ 1)2m.
Radó and Lin proved with the help of the computer that Σ(3) = 6, S(3) =
21 [31]. Brady [12] and Kopp [22] (reported in [32])10 proved that Σ(4) =
13, S(4) = 107 and also confirmed the results by Radó and Lin. In what fol-
lows, we will give a relatively detailed account of the proofs of these results.
Before doing so, I must point at a difference between the Turing machine rep-
resentation used by, on the one hand, Brady and, on the other, Kopp, Radó
and Lin. Contrary to Brady, they treat a halt as a separate branch to a state
0 within a normal entry of a Turing machine. This has an effect on the total
number of 2-symolic Turing machines with m states. Instead of (4m + 1)2m,
there are now [4(m+ 1)]2m distinct 2-symbol, m-state machines. Table 3 gives
an overview of the total number of machines with 2, 3 and 4 states for both
approaches. As is clear from table 3 the approach by Brady results in a smaller
number of cases to start from.
The three proofs all make use of a series of computer-assisted reductions of the
total number of cases for each of the classes of 2-symbolic Turing machines with
3 and 4 states until finally no so-called holdouts remain. I.e., it was determined
for each of the machines individually, whether or not they halt when started

10Kopp is the girl name of Machlin.
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m (4m+ 1)2m [4(m+ 1)]2m

2 6561 20736
3 4 826809 16 777 216
4 6 975 757 441 25 600 000 000

Table 3: Number of 2-symbol Turing machines with m states.

from a blank tape, and, if they halt, which values s(T ) and σ(T ) they have.
For each of the proofs found, there was a conjectured value for Σ(m) and S(m).
These were proven lower bounds, found by making use of certain heuristic and
explorative methods.11 In all cases, the conjectured values turned out to be the
correct values.
The proofs consist of two main stages of reduction, a more theoretical and a
more heuristic stage. In the first stage, certain theoretical considerations are
used that result in the immediate (computer-assisted) elimination of a large
number of machines. Radó and Lin came to the conclusion that all machines
of which the first instruction is not (1, 0, 1, R, 2) could be eliminated.12 These
methods were also used by Brady and Kopp. They extended the argument by
Radó and Lin by what they call a tree generation, generating instructions as
they are needed.13 This method could be easily automated and was used to
eliminate a large number of machines. Table 4 gives an overview of the number
of remaining machines, called the holdouts, after the application of the several
elimination methods used in stage one for each of the proofs.14 The differences
between the number of remaining machines after application of the tree normal-
ization between Brady and Kopp can be explained by slight differences in their
respective approaches. As is clear from Table 4 certain theoretical considera-
tions allowed for a serious reduction in the number of cases to be considered.
However, the number of remaining cases is still too large to be humanly practi-
cal
The next step in all the proofs is to turn to, what Brady calls, more heuristic
proof techniques. In the next stage, Radó and Lin first used the conjectured
value S(3) = 21 in order to eliminate some further machines. Clearly, all those
machines that halted before this respective number of steps was reached could
be eliminated. Kopp used the same technique, although she did not use the
conjectured value for S(4) but decided to run each of the remaining machines
for some hundred steps n > 107. In case of Kopp, this technique led to the
elimination of 1364 resp. 182,604 machines for the 3-state resp. the 4-state

11For example, in [11] Brady mentions that he used certain heuristic methods to conjecture
that Σ(4) = 13, S(4) = 107. Note that in the ongoing research on the Busy Beaver competition
one still makes use of several heuristic methods to determine lower bounds, methods which
are also used in proofs of Busy Beaver winners.

12For an explanation why this can be done the reader is referred to [31].
13For more details the reader is referred to [32].
14The method of (tree) normalization was not the only method used. However, it is the

most important one.
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n Radó and Lin Brady Kopp
3 82,944 ± 4,000 3,936
4 � ± 550,000 603,712

Table 4: Number of Turing machines remaining after the first series of reductions.

case. Brady first reduced the ± 4,000 resp. ± 550,000 remaining machines to
27 resp. 5,820 holdouts by coupling the tree generation program to “a heuristic
solution to the halting problem.”. No exact numbers are known in the case of
Radó and Lin.
So how to proceed from here? In the next steps, Kopp, Brady, Lin and Radó
made use of more explorative and heuristic methods. These were used in order
to:

• identify or “discover” different types of “patterns”, called infinite loops by
Kopp, in the behavior of the holdouts

• automate the detection of these patterns in the holdouts

Kopp, Brady, Lin and Radó were able to identify different types of infinite loops
with the help of the computer. For each of these types of loops it can be proven
that, if they occur in a given Turing machine, then that machine will never halt
and thus its halting problem is decided. Now, if it could be proven for each
of the holdouts that its ultimate behavior is an infinite loop than it is proven
that these holdouts will never halt and one can thus prove the result (since the
values s(T ) and σ(T ) are known for each of the halting machines).
What Kopp, Brado, Radó and Lin basically did was first to print-out the behav-
ior of some of the holdouts, study it and try to detect certain patterns that could
then be generalized and be proven to be cases of infinite loops. Programs were
then written that allowed for the automated detection of infinite loops which
could then result in the elimination of machines whose ultimate behavior was
one of the infinite loops found and formalized in a program. In the end, several
types of infinite loops were detected. The most important ones are simple loops,
Christmas trees, shadow Christmas trees and counters.15

Identifying and then detecting different types of infinite loops was the hardest
part of the Busy Beaver proofs. Machlin (Kopp) and Stout describe it as follows
([32], pp. 91–92):

The major effort in calculating busy beaver numbers [...] lies in prov-
ing that large numbers of machines are in infinite loops [i.e., never
halt]. The approach taken [by Brady, Radó and Lin and Kopp] is to
examine some of these machines by hand, elicit a common behaviour
which insures that a machine is in an infinite loop, and then write a
program which examines candidate machines and proves that some

15Note that not all of these types were found by Radó and Lin.
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of them do indeed have that behavior. This process tends to iter-
ate, with the researcher constantly trying to reduce the number of
unclassified machines by either generalizing types of behavior earlier
searched for, or by discovering new types of behavior

Brady gives the following description of the structure of the automated detection
of infinite loops:

BBFILT was used to separate heuristically the 5,820 holdouts into
“Xmas Trees”, “Counters,” and “Unknown,” while BBFXX, a mod-
ification of BBFILT separated the “Alternating Xmas trees” from
the “Unknown” set. BBX2 was the Xmas Tree prover [...]. BBSHAD
was a modification to handle “Trees with Shadow”, BBALTX was
an extension of BBX2 to handle “Alternating Xmas Trees”, while
BBALTX1 was a minor modification of BBALTX to handle dou-
ble sweeps in which the extremum was reached on alternate sweeps
only. BBC was the counter prover, while BBCM was a modification
of BBC to handle “two-shot” carries and some cases of cell inter-
dependence. More than 18 other programs were written for various
housekeeping purposes, simulating and displaying machine behav-
ior, exploring other reduction and filtering possibilities, etc. In all,
at least 53 files were created and maintained for the project. Keep-
ing track of what resembled a large scientific experiment became a
major task in itself.

After the infinite loop detection program was applied, the small number of
remaining hold-outs were then examined “by hand” and all eliminated as other
cases of infinite loops. Hence, the results that Σ(4) = 13, S(4) = 107 (in case
of Brady and Kopp) and that Σ(3) = 6,Σ(4) = 13 (in case of Lin and Radó,
Brady and Kopp). Even this last stage was partly computer-assisted. As Brady
explains:

All of the remaining holdouts were examined by means of volumi-
nous printouts of their histories along with some program extracted
features.

2.3 Some features of the proofs

In what follows I will discuss three important features of the Busy Beaver proofs
in more depth.

2.3.1 Experimental and heuristic methods.

As was shown in Sec. 2.2, the second stage of each of the proofs is more involved.
It is also this stage which can be called the more explorative and heuristic stage
of (the process of finding) the proof. As Brady describes it [12]:

10



In this final stage of the k = 4 case, one appears to move into a
heuristic level of higher order where it is necessary to treat each ma-
chine as representing a distinct theorem. [...] The proof techniques,
embodied in programs, are entirely heuristic, while the inductive
proofs, once established by the computer, are completely rigorous
and become the key to the proof of the new and original mathemat-
ical results: Σ(4) = 13 and S(4) = 107.

The “heuristic” character of the second stage of the proof needs to be situated
on two different levels: on the one hand, the identification of different kinds of
infinite loops (simple loops, christmas trees, shadowy christmas trees, counters)
and their variants, on the other, the actual detection of these loops in the class
of holdouts, ultimately reducing the number of holdouts to 0.
The identification of new types of infinite loops can be considered as an experi-
mental process in the following sense: the behavior of some (randomly selected)
holdouts was printed out, then examined by hand and a new type of loop or
some variant of an already known type was possibly identified. Brady also men-
tions that the computer was not only used to merely print out the behavior to
assist in the identification of infinite loops, but also to extract certain features
that might indicate an infinite loop. It was not known in advance whether the
holdout studied would show some new pattern of an infinite loop. Maybe more
steps would be needed in order for such pattern to show itself or maybe it was
a halting machine. It was also unknown in advance how many different types
and which types one could expect. To paraphrase Lehmer, this process of iden-
tification of infinite loops is a process of exploring the universe of mathematics,
assisted by the computer.
The heuristic character of the actual detection of infinite loops in the number of
holdouts, concerns the use of what Brady has called heuristic programs. These
are identified as such, because there is no guarantee that the decision made
by the program is the correct one. Given for example one of the christmas
tree detection programs, then the uncomputability of the halting problem com-
bined with the practical fact of finite time implies that it is not guaranteed that
this christmas tree detection program will detect every case (or a variant) of a
christmas tree. I.e., there are cases of holdouts which might actually be cases of
christmas trees, but which will not be detected as such by the detection program.
It might for example be the case that the holdout is a yet undiscovered variant
of a christmas tree, or that the typical behavior of a (variant of a) christmas
tree, as described in the christmas tree detection program only “shows” itself
after say billions and billions of computation steps. Since one does not know in
advance if a given holdout is a case of a christmas tree, nor, if it is, when the
typical behavior of a christmas tree will be observed, one needs to make certain
choices, in order to assure that the christmas tree detection program will halt
for every case. Machlin and Stout explain that if their christmas tree detec-
tion program ran too many steps without finding the desired behavior then the
machine remained a holdout, even if it might in fact be a case of a christmas
tree. This problem is described as follows in the case of a program called the
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backtracking program [32]:

While backtracking can be useful, it cannot be guaranteed to always
stop since otherwise it would suply a solution to the halting problem.
As with all the heuristics we discuss, one must make some decision
as to how long to run this technique before abandoning it.

Another example of a kind of heuristic program (used by Brady and Kopp)
is the “tentative” classification of the holdouts as cases of christmas trees or
counters. This classification was made on the basis of the rate at which new
tape squares were visited. On the basis of the decision “made” by this program,
either a counter or christmas tree detection program was run. Brady calls
this program (BBFILT) a heuristic filter, “a heuristic technique based upon
experimental observation.”
It has been argued that CaPs like the 4CT show that there are certain parts of
mathematics that are (quasi-)heuristic in nature. Tymoczko’s paper [45] is the
most well-known paper in this respect. His main reason however for considering
the 4CT heuristic in nature, is the fact of its human unsurveyability. This
argument has been countered in the literature on many occfasions.16 Now, the
authors of the Busy Beaver proofs very clearly do not shy away from identifying
certain aspects of their proofs as experimental, explorative or heuristic in nature.
However, their reasons for doing so has nothing to do with the unsurveyability
of their proofs, but rather with the inherent and practical unpredictability of
the different Turing machines to be considered. It is this unpredictability that
forces them to explore the behavior of the different machines and to use so-called
heuristic programs.

2.3.2 The process of the proof

Normally, when a proof is published in a paper, no (conscious) mention is made
of the process of finding that proof.17 The actual proof and the process of finding
that proof are considered to be strictly separated. What counts is that there is
a proof of some theorem. The proof is that which needs to be communicated,
what needs to be published, what remains. The dirty details of the process that
resulted in the proof are considered irrelevant.
In the published accounts of the Busy Beaver proofs, on the other hand, one
finds that a lot of information is given about the process of finding the proof. In
a certain way, this should not come as a surprise: as is clear from the respective
papers, as far as Busy Beaver proofs are concerned, the process of finding the
proof and the proof itself are very much intertwined. It is during the process
of reducing the number of holdouts (the process of the proof itself) that new
(variants of) types of infinite loops are discovered, that computer programs need
to be refined or that new programs need to be written,...
Even though the initial intertwinement between the process of finding the proof

16See Sec. 3 for more details.
17Of course, to say that no traces at all can be found in published mathematical papers of

the process of finding and the practice underlying a proof, is caricatural.
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and the proof itself is in a certain way trivial,18 the fact that the Busy Beaver
proofs are represented and communicated in terms of their discovery processes
is an important (but of course not exclusive) feature of these proofs. So why
chose this strategy? Brady gives the answer [12]:

While not all the exploratory activities are reproducible, the runs
shown [...] can be reproduced, so that by utilizing the techniques
described in this paper the proof can be corroborated

In other words, information on the process of finding the proof is provided in
order for the reader-mahematician to be able to verify the proof and see if it
does not contain errors. This is a very important feature as it is not only a
local strategy against the problem of hardware and software errors in CaP’s
(See Sec. 3), but also a way to “convince” other mathematicians of the result:
even though they do not have all the details they have enough information to
convince themselves of the proof.

2.3.3 Man-computer interaction and the machine’s responsibility

A last feature that needs to be mentioned here is the fact that the respective
proofs result from a complex process of man-computer-interactions.
In the first stages of the Busy Beaver proofs the process of man-computer in-
teraction is relatively simple. The human work is strictly separated from the
computer work. First, there is the theoretical and human idea of tree gener-
ation which is translated into executable computer code. The computer then
generates the reduced class of Turing machines. There is only one moment of
interaction: when the human translates the theoretical ideas to the computer
and asks the computer to execute them. Here, one could say that the machine’s
role is a very passive one. It is a mere calculation, following an order. It is not
very involved, it is hardly responsible for the actual result. This is probably
also one of the main reasons why the computer is hardly mentioned by Radó,
Lin, Brady and Machlin and Stout in describing this first stage!
In the second stage however, which is the more heuristic stage, the interactive
process is far more complicated. It is through a constant process of back-and-
forth interaction, using a programming language, the display and print-outs
as the means of communication, the “common languages” (interfaces) through
which man and computer communicate with each other, that the proof is finally
found. During this process, new types of infinite loops are discovered, new pro-
grams are written or old ones are extended,...In this second stage, the computer
is more actively involved in the process of (finding) the proof. Here, its contri-
bution is also more explicitly mentioned by Radó, Lin, Brady and Machlin and

18From a certain point of view, it is indeed almost trivial to say that if one is “in” the
process of searching for a proof, and this process ultimately results in a proof, then searching
for that proof is also always “making” that proof, hence the intertwinement. However, once
the proof is “found” the proof is all that needs to be represented, the proof which might be
very different from the proof “as it was found”. In the end, it is the proof that counts not the
process that resulted in the proof
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Stout. Although, during this process of interaction, it is relatively clear which
kind of things are done by the computer and which are done by the human,
one cannot say that both sides are strictly separated from each other, they are
involved with each other and it is this involvement that results in a proof.
This aspect of mechanized mathematics, the way man and computer interact
with each other and the machine’s involvement in this process, is mostly ne-
glected in the literature on this topic. One of the exceptions is Derrick H.
Lehmer. He used the idea of the amount of machine involvement in and respon-
sibility for a result to order the different reasons why a mathematician would
want to add pulse circuitry to the more usual pencil-and-paper method.19 For
Lehmer, the computer’s responsibility or involvement is at its highest in case
of CaPs.20 In fact, for Lehmer, computer-assisted proofs result from a true
man-computer collaboration. He described this process as follows [27]:

We are dealing here with a man-machine cooperative. The man
furnishes to the machine the best information that he has about the
proposed theorem and the sort of proof that he thinks is likely to
succeed. From this you will infer correctly that the actual proof is
unknown to the man. In fact he doesn’t know whether the theorem
is false, or, if true, whether the machine can prove it. The machine
is asked to carry out the logical steps of the proof, if indeed it can,
in the allotted time. You will infer from this that there are a great
many steps and that they cannot be carried out by hand. Usually the
steps are not only numerous but are connected in some complicated
combinatorial way. Here we are exploiting not only the speed of
the computer but also its logical circuitry that allows it to keep
track of and to modify its own complicated program to a degree well
beyond human capability. Theorems of this kind are not easy to find
in those drab branches of mathematics where elaborate proofs are
not the rule. However, there are infinitely many such theorems in
number theory alone.

As is reflected by this quote, the idea of a man-computer collaboration does not
mean that the computer is assigned some kind of “artificial intelligence”, the
idea that the computer is capable to simulate or really be as intelligent as a
human mathematician. On the contrary, it is made explicit by Lehmer that the
computer’s contribution lies in doing those things we are really bad at, while the
human mathematician takes care of those things the computer is bad at. The
computer is involved here because it “thinks” differently than we humans do.
It is an active partner in the process of finding a proof, however, a partner that

19See [27], pp. 745–749 and [28], pp. 118–119
20Another similar parameter Lehmer uses to order different usages of the computer in math-

ematics is the question whether the mathematician, who publishes the result that was estab-
lished in some or the other way with the help of the computer, will mention the computer
or not and if yes, how much responsibility he will assign to the computer. A rather extreme
example in this respect are some of the papers (co-)authored by Shalosh B. Ekhad. See for
instance [17]
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is not human and should not be or behave like a human. In fact, it is because
the computer is thinking not like a human mathematician that it is so good at
what it does! In a way, this is the perfect collaboration: getting new results by
combining different talents.21

3 Managing Unsurveyability, Mathematical Un-
derstanding and errors

Since the 4CT there has been a growing number of philosophical papers on CaPs,
both by philosophers and mathematicians. The main question is whether or not
computer-assisted proofs like that of the 4CT change our understanding of what
a proof is. I.e., do CaPs have any fundamental impact on the epistemology of
mathematical proofs and thus, ultimately, mathematical knowledge? There are
three main problems in this context.

A. The problem of unsurveyability. One of the most frequently discussed
problems with respect to CaPs (basically, the 4CT) is the problem of unsur-
veyability. The problem comes down to what was once called the falling-tree
conundrum [14]: Has a tree fallen if no one can hear it? Has a theorem been
proved if no one can read its proof, surveying every one of its details? Besides
the possibility of a lengthy theoretical part (as is the case for the 4CT and the
sphere packing problem) and thousands of lines of code that need to be surveyed
and reviewed in order to convince oneself of the proof, CaPs involve millions of
computations that, practically, cannot be surveyed by a human. This problem
has several consequences. First of all, as we do not know all the details of the
proof, as we have not “followed” the proof in all its details, one must ask how
one can still understand the proof (see problem B.). Secondly, as CaPs are
unsurveyable one must ask how one can be sure that they are error-free, how
can one rely on a proof for which one does not have all the details (see problem
C.)?
On the basis of the inherent unsurveyability of the 4CT, Tymoczko argued that
this is a new kind of proof. Because of its unsurveyability, the proof of the 4CT
shows that there are a posteriori mathematical truths, truths which rely on em-
pirical evidence. For Tymoczko, the proof of the 4CT shows that mathematics
is fallible and empirical. The epistemological role Tymoczko assigns to the 4CT
because of its unsurveyability has been opposed in the literature. Some have
argued that the unsurveyability of CaPs does not show that mathematics is
fallible and empirical (See for example [30, 43, 44]). One of the main arguments
here is that Tymoczko places too much weight on the human factor of proof.

21This point was also made by Appel in an interview on the four-color theorem: “The
computer [...] was not thinking like a mathematician [...] The computer was using [...] these
bits of knowledge it had in every conceivable way, and any mathematician would say, ‘No,
no, no, you have got to organize yourself, you have got to do it that way’, but the computer
wasn’t doing that. And it was more successful, because it was not like a mathematician.”
(quoted in [33])
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It is not because a proof is humanly unsurveyable that it is for the computer
(See e.g. [4, 30, 23]). Another argument is that surveyability is actually not an
essential property of proofs (see e.g. [16, 44]). Others have argued that although
they agree with Tymoczko that empirical evidence is used in mathematics, this
is not something novel introduced by the 4CT (See for example [16]). A different
perspective on the unsurveyability of proof is offered by Shanker [42]: he claims
that a proof is only a proof when it is humanly surveyable, hence, CaPs like the
4CT cannot be considered as proofs.

B. The problem of mathematical understanding. This problem is very
closely related to problem A.. It basically comes down to the following ques-
tion: how can we achieve mathematical understanding if part of the argument is
hidden in a box? According to Bonsall [7], the fact that we do not have all the
details of the proof implies that CaPs like the 4CT are not “real” mathematics.
He says that: “It is no better to accept without verification the word of a com-
puter than the word of another mathematician.[...]We cannot possible achieve
what I regard as the essential element of a proof – our own understanding – if
part of the argument is hidden away in a box” Halmos shares this opinion [20].
For him, CaPs like the 4CT are like oracles. All you know is that the 4CT
is true but you do not know why it is true. He goes on “I feel that we, hu-
manity, learned mighty little from the proof; I am almost tempted to say that as
mathematicians we learned nothing at all. Oracles are not helpful mathematical
tools.” Related to this is the idea that theorems like the 4CT seem to have a
certain arbitrariness, it is not clear why they are true exactly.22

C. The problem of (hardware and software) errors. Because of the
unsurveyability of CaPs like the 4CT (the length of the programs and compu-
tations) these CaPs also suffer from the further defect that one cannot be sure
that no errors have occurred (See e.g. [7, 45]). It is well-known that checking the
correctness of a program is a very hard problem. Besides, it is known that hard-
ware errors do occur. When very long computer programs and computations are
involved, there is thus a real chance of machine and human errors (See e.g. [25]).

These three problems are very real and the debates arising from them are still
open-ended. As is clear from this summary, there are reasons to accept and
reasons to reject the idea that CaPs do lead to a fundamental change of the
notion of proof in mathematics, and thus have a fundamental impact on the
foundations of mathematics.
Also in case of the Busy Beaver proofs these problems are real. In fact, one
can say that, by definition, CaPs will always suffer from these problems. In the
end, they are humanly impractical so some part of them must be unsurveyable

22The idea that there are mathematical truths that are true for no clear reason, that are
in a certain way random, has been advocated by Gregory Chaitin, one of the founders of
algorithmic information theory (AIT). He uses the definition of randomness from AIT in
order to make his point.
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by humans, and we thus also automatically get the problem of mathematical
understanding. The problem of (software and hardware) errors also seems un-
avoidable, although there are some recent examples that avoid this problem to
some extent.
Although a detailed philosophical analysis of these three problems on a macro
level is necessary in order to come to terms with the impact of CaPs on the
notion of proof, it is also interesting to see how these problems pop-up in differ-
ent CaPs,23 and, more importantly, how they are or can be dealt with locally.
In the end, as these three problems are real, they need to be managed with
in some or the other way on the more local level of finding, representing and
communicating a proof. Tracing these “smaller” changes can at least help to
clarify the changes CaPs bring about on the level of the practice itself.
So how how do these three problems occur in the context of the Busy Beaver
proofs and how are they managed?24 In a certain sense, these proofs are maybe
not as unsurveyable as the original 4CT since the theoretical part of the proofs
are relatively short.25 However, the proofs remain unsurveyable. First of all,
they involve a lot of human work of which hardly any of the details are pub-
lished. For example, the 210 holdouts in the Kopp proof are all proven to be
cases of infinite loops by hand. Clearly, if the proofs of these 210 holdouts
would have been included in the published accounts of these proofs, tens of
pages would need to be added, including the print-outs of the behavior of these
210 holdouts. Secondly, the proofs involve very long (unpublished computer)
code. Finally, and this is an essential feature of CaPs, the proofs involve thou-
sands if not millions of computations that result in thousands of different small
proofs determining for each of the Turing machines whether or not they will
halt. Taking these three aspects together, it is clear that Busy Beaver proofs
are unsurveyable.26 Since the problem of mathematical understanding and in-
sight is very closely related to the problem of unsurveyability, it also occurs
in case of the Busy Beaver proofs. The same goes for the problem of human
and computer errors (problem C). So, how are these problems managed in the
context of the Busy Beaver proofs discussed in the previous section?

I. Managing the problem of error. In the paper by Machlin (Kopp) and
Stout it is noted that:

The work in [22] is an independent confirmation of Brady’s results,
which is important since the sheer volume of human and computer
work involved raises the possibility of error.

23And not just in the one case one usually considers
24I will mainly focus on the paper by Brady [12] and Machlin (Kopp) and Stout[32].
25The original proof of the 4CT involved not only millions of computations and computer

code that initiated them but also a considerable amount of other “text”. As is explained by
Appel and Haken: “This leaves the reader to face 50 pages containing text and diagrams,
85 pages filled with almost 2500 additional diagrams, and 400 microfiche pages that contain
further diagrams and thousands of individual verifications of claims made in the 24 lemmas
in the main sections of text.” [2].

26Of course, the first two features are not exclusive for nor essential to CaPs.
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Brady makes a similar comment, pointing at the necessity of independent veri-
fication:

Proofs of “correctness” of the programs used are not practical. In-
dependent verification is the only means we currently have at our
disposal.

As is clear, Brady, Machlin (Kopp) and Stout are very much aware of the
problem of (hardware, software and human) errors. Indeed, because of the
length of the actual proof (the programming, the execution of the code in several
stages (!) and the human work to prove the final holdouts) the chances that an
error has occurred increase, and the result might thus be false. Furthermore,
the unsurveyability of the proof also makes it impossible to check every detail of
the proof and conclude that the proof is for 100% watertight. There are several
ways to deal with these problems. The best solution I know of to avoid errors
is the use of interactive theorem provers like HOL to attain formal proofs that
have been checked completely by the computer.27 The “method” mentioned by
Brady, Machlin and Stout to reduce the chance that (human or machine) errors
have occurred that of independent verification. As was explained in Sec. 2.3
the description of the process of the proof, can also be understood as a strategy
to allow other mathematicians to check the correctness of the proof.
Although the method of independent verification can never lead to complete
certainty, it is often one of the more efficient methods available. Even if one
cannot exclude the possibility of errors in the Busy Beaver proofs, the fact that
the cases Σ(m), S(m),m < 5 were verified, not only reduces the chances of
errors but, maybe even more, says something about the way mathematicians
think they should deal with one of the typical problems of CaPs.28

II. Managing unsurveyability. As is explained by Brady in the next-to-last
quote of Sec. 2.2, “keeping track of what resembled a large scientific experiment
became a major task in itself.” For this reason, Brady wrote more than 18
programs for, among other things, “various housekeeping purposes”. In other
words, it is clear that the length of the whole proof was really a problem which
made it necessary to implement certain strategies to deal with the complexity
of the proof.
The problem of unsurveyability is also a problem if one needs to write down
and communicate the results one has found. One needs to find a good format to
present the proof in, despite its unsurveyability. Contrary to the famous papers

27For example, the last version of the 4CT by Gonthier is such a proof. Also Thomas Hales
has started the FlySpeck project in order to produce a completely formalized and computer-
checked proof of the sphere packing problem in a reaction to the fact that after a team of
referees had worked on the proof for 15 years they concluded that they were only 99% sure
that it contains no errors. For a philosophical discussion of formal computer-checked proofs
related to the problem of unsurveyability and error, see [4].

28It should be pointed out that they are not the only ones to emphasize the significance of
independent verification. For example, in [25] Lam points out that: “[the proof of the non-
existence of the projective plane of order 10] is only an experimental result and it desperately
needs an independent verification, or, better still, a theoretical explanation.”.
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by Appel and Haken, or that by Hales, the published papers on Busy Beaver
proofs considered here are relatively short despite their alleged unsurveyability.
One of the reasons for this is that not that many details are provided in the
respective published versions of the proofs.29 This not only concerns the com-
puter programs and the actual computations. For example, only the main types
of infinite loops are described in detail, despite the different kinds of variants
discovered for each of the types. Also, the details of the proofs of the hold-
outs that were proven by hand are not provided. To the sceptical reader, this
can only add to the mistrust one must have in this kind of proofs, making them
even less suitable for review than for example Thomas Hales’ proof of the sphere
packing problem. However, from another point of view, one could say that pro-
viding an explicitly short “summary” of a CaP, skipping a lot of the details,
is just another way to deal with the unsurveyability and thus the impossibility
of communicating every one of the details of the proof. By dealing with this
problem in this way, the “persuasiveness”, the argumentative power of these
proofs, as they are communicated to the reader, functions differently. Even
though not all the details are provided, the reader is given enough information
to understand how the proof works. The papers describing the proofs provide a
general descriptions of the programs, how they are used for the tree reduction,
for the detection of infinite loops or the exploration of the behavior of the Tur-
ing machines studied, the order in which these programs were executed,...This
way of communicating and writing down CaPs, a method which is in a certain
way not new for mathematics,30 is an important possibility for dealing with the
inherent unsurveyability of these proofs. The unsurveyability of course remains,
and the proof will not be represented in all its details. However, the problem is
dealt with by developing a style, a method of representing these proofs that still
allows them to be published in a reasonable amount of pages and be reviewed in
a reasonable amount of time and still allows the reader to understand the main
techniques of the proof. Of course, the reviewer will need a certain amount of
trust if he/she does not want to go through the trouble of reconstructing every
detail of the proof.31 He/she has to trust not only the machine, but also, and
maybe even more, the mathematician.
The question of what to include and what not to include in a paper describing
a CaP is a very intricate one and needs further consideration. However, if CaPs
are ever to become part of the common discourse of mathematics, published
papers of proofs that need over 100 pages will have to be the exception rather
than the rule, else, the communication of mathematical knowledge will become
practically impossible.

29The technical note describing Brady’s proof in more details and Kopp’s PhD containing
the proof are of course lengthier.

30How often does one not find something written like “The details of the proof are left to
the reader”? because it is considered that the techniques needed for the proof are known.

31The reviewing of CaPs is indeed a difficult problem that has become very apparent in
the context of Hales’ proof of the sphere packing problem. In this respect it is interest-
ing to read the statement by the editors of the Annals of Mathematics concerning CaPs
(http://annals.math.princeton.edu/EditorsStatement.html).
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III. Managing the problem of understanding. A problem that is very
closely related to the unsurveyability of CaPs is the problem of mathematical
insight and understanding, the question of the explanatory power of CaPs. The
same question must be posed in the context of the Busy Beaver proofs. Indeed,
in how far does e.g. Kopp’s CaP provide an understanding of the fact that of
Σ(4) = 13? From a certain point of view, the answer to this question is that the
Busy Beaver proofs do not really provide an understanding of the facts proven.
Since large portions of the proof are “generated” by the computer without any
human mathematician having surveyed this part of the proof we can never fully
understand why Σ(4) = 13. This problem seems to become even worse if one
has not “found” the proof but has merely read the descriptions of the proofs by
Radó, Lin, Brady and Kopp. However, to conclude on this basis that these Busy
Beaver proofs do not provide any insight or understanding whatsoever, that, to
put it in Halmos’ words, we learned nothing at all, seems a case of throwing the
baby out with the bath water.
Clearly, because of the problem of unsurveyablity, it is indeed impossible to
understand every detail of the proof. However, this does not exclude under-
standing on a more general level, on the level of the structure of the proof and
the feasibility of the methods used. In order to understand this, we need to
return to the actual proofs.
As was explained in Sec. 2.2 the Busy Beaver proofs discussed proceed in two
main stages. The first stage concerns the reduction of the number of Turing
machines to be considered by implementing certain theoretical considerations,
normalization being the main technique. Clearly, these theoretical methods
are explained and one can understand why they work. Although this first set
of reductions is achieved by the computer, one cannot say that, given a spe-
cific machine that has been eliminated, one cannot understand why it has been
eliminated. Furthermore, although one does not have every one of the details in
order to understand why only 603,712 and not 603,711 holdouts remain in case
of Kopp’s tree normalization program, one can understand how the program
works and why so many machines are eliminated.
In the second stage of the proof the idea is to differentiate between halting
and non-halting machines by using several different heuristic programs. First,
a program is used that runs each of the holdouts for some hundred of steps and
eliminates those that have halted. Then the proof goes on with the remain-
ing machines, trying to prove that each one of them is a non-halting machine
through the detection of infinite loops. Now, in each of the proofs discussed,
the remaining machines “happened to be” cases of non-halting machines. Why?
Because, through a complex interaction between man and the computer, it was
found that all of these holdouts are cases of one of the different types of infinite
loops. Clearly, this does not provide a good understanding. However, one can
easily understand the general idea of the second stage of the proof. One can un-
derstand why all the remaining holdouts must be non-halting machines: during
a process of exploration several different types of patterns were found. It can
be proven that if a given Turing machine shows this patterns in its behavior
than it will never halt. Now, for each of the holdouts it was proven – some

20



by hand, most through the use of heuristic infinite-loop detection programs –
that they are each cases of one of these types of patterns. Hence it follows that
they cannot halt. Of course, we do not have the details to understand why
exactly 417 (and not say 320) of the 4-state machines, and only those, were
identified as counters by Kopp’s counter-detection program, nor do we have a
complete understanding why some machine x results in, say, a Christmas tree.
However, we do know what a counter is, we do know why a counter must be a
non-halting machine, we do know why the counter-detection program eliminates
some machines and others not (even though these might still be counters),...In
other words, although we do not have all the details and we do not have a kind
of complete and detailed explanation or understanding of the Busy Beaver re-
sults, one cannot neglect that the papers on he Busy Beaver proofs do convey
an understanding of how the proof works and why it works on the global level.
Furthermore, the proofs also give an insight on another level: they say some-
thing about the possible behavior one can expect from very simple programs,
which are on the borderline of undecidability. This observation can be used in
other settings. In fact, this is done in the paper by Machlin and Stout: the
techniques and observations of the Busy Beaver proof are also used in the con-
text of determining halting probabilities.
It is true that the Busy Beaver proofs do not give the kind of insight one gets
from the several proofs of for instance the Pythagorean theorem. However, to
call them oracles which do not provide any insight or understanding whatsoever
is equally wrong.

4 Discussion

What exactly is the impact of the computer on mathematics? Has the com-
puter really changed mathematical knowledge and the way we attain it, and, if
yes, how? As was explained throughout the paper this is an intricate question
which has had no definite answer. A lot depends on ones own epistemological
and ontological position. Questions like: “Are CaP’s fundamentally different
from the usual proofs of mathematics?” or “Do CaP’s show that mathemati-
cal knowledge can be a posteriori?” are fundamental issues, issues that, in my
opinion, cannot be answered satisfactorily on the basis of one micro-analysis.
However, whatever ones answer might be to these fundamental issues, there is
one thing which cannot be denied on the basis of this and other case studies.
Computers are changing the way we are doing mathematics. They are changing
“mathematical practice”.
As is clear from the case-analysis provided here, CaP’s share some very typical
features, problems and techniques. First of all, the aspect of man-computer
interaction should not be underestimated. This is something completely new in
mathematics, the fact that a proof is the result from a collaboration between
a human and a non-human. It is the first time in history that a non-human
is actively involved in the process of the proof. Although this non-human is
mostly regarded as a mere quantitative help, it has led to fundamental quali-
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tative changes, witness the fact that the mere increase in speed and memory
added by the computer has made it possible to prove theorems that could not
be or have not yet been proven without it. Besides this, the use of the computer
almost naturally introduces the use of experimental methods in the process of
finding a proof. These methods involve both the computer as well as the human,
they arise within the complex interaction between man and machine.
A consequence of the involvement of the computer is that the representation of
CaP’s, the way they are communicated, is different from that of usual proofs.
A proof-as-communicated is no longer a sequence of lines of symbols that rep-
resent the proof found by the mathematician. It also includes a description of
what the non-human has done (the computational process), what kind of re-
sults it communicates back (the output) and how the human has communicated
his/her questions to the non-human (the code). Furthermore, unlike more tradi-
tional proofs, there is a strong emphasis on the process of finding a proof in the
published papers of the CaP’s discussed in this paper, making explicit mention
of the several experimental methods used, the complexity of this process,...As
was explained in Sec. 2.3 one of the reasons for doing so is to deal on a local
level with the problem of error and to allow for the reader-mathematician, even
if he/she has not all the details, to follow the proof and verify it. Indeed, it
is a typical property of CaP’s that they all suffer from the same fundamen-
tally philosophical problems of unsurveyability, understanding and error. These
problems seem unavoidable, but are dealt with on the local level. I.e. specific
strategies are implemented both in the process of finding the proof as well as in
the process of finding a good form for the the proof in order to “manage” these
problems.
The least one can thus conclude is that the process of finding a CaP, the method
of writing it down as well as the communication of a CaP is different from usual
proofs, at least, from a practical point of view. If one furthermore accepts that
the way a proof is attained, its written-down form and the way it is commu-
nicated, is a determining feature of what a proof “really” is, or better, means,
then this alone changes (the meaning of) proof.
It is thus clear that, practically speaking, CaP’s do have an impact on math-
ematical practice. However, as long as CaP’s, and, more generally, computer-
assisted mathematics are the exception rather than the rule, the impact of the
computer on mathematical practice remains rather limited. They only have a
local impact, not a global one. The fact that proofs-made-flesh are different
from the usual proofs of mathematics, the fact that one needs to deal with
the fundamental problems of unsurveyability, understanding and error, the fact
that experimental methods are needed and all the consequences these features
and problems have – all these facts and effects can be discarded on the basis of
the marginal role CaP’s play. The impact remains limited to a few cases and
one can simply classify these cases as some of those exceptional “behemoths”
mathematics sometimes gives rise to. However, the question is whether this will
indeed remain the case. It is only since the last 20 to 30 years that the computer
and thus computer-time has become widely available to every mathematician
not only physically, in the sense that every mathematician now has his/her per-
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sonal computer, but also intellectually, since more and more mathematicians are
getting used to using computers. Furthermore, the memory and computation
speed is exponentially larger as compared to that of the early computers.32 This
wide availability of the computer and the increase in speed and memory, mere
quantitative facts, could result and are in fact already resulting in more and
more computer-aided mathematical results.
If the usage of computers in mathematics is becoming more general, one cannot
but conclude that they have an important impact on mathematics-as-practiced
on the global level. A consequence of this is that, as the present case-analysis
shows, the mathematicians will have to develop new methods and they will have
to deal with the problems computer-assisted mathematics gives rise to. New re-
sults will be found as a consequence.
Is this where the impact of the computer stops? It is my view that as changes
on the micro-level of the practice become more and more wide-spread, funda-
mental changes on the macro level and thus also changes in the foundations
and philosophy of mathematics, become unavoidable. The way mathematics
is perceived and understood changes. Questions concerning the certainty of
mathematical knowledge, the fallible character of mathematics,...will only gain
in importance, as more and more mathematicians are confronted with the con-
sequences of computer-assisted mathematics. The fact that one is no longer
able to check a proof completely, the fact that part of the proof is done by
a non-human, the necessity of using experimental methods, the fact that one
is confronted with very long proofs,...are real problems that not only change
mathematics-as-practice but also the standard of what a proof is/should be and
thus, ultimately, the standard of what mathematical knowledge is/should be.
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