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1. Introduction

1.1. Post’s frustrating problem of “tag”

Tag systems were invented and studied by Emil Leon post [15, 16] during his Procter fellowship in math-
ematics at Princeton during the academic year 1920-21. They played an important role in his work on
normal systems, which he also developed during that time, and led to the reversal of his program to prove
the recursive solvability of the Entscheidungsproblem for first-order predicate calculus. Indeed, after 9
months of intensive research on tag systems, Post first came to the conclusion that proving the decid-
ability of the Entscheidungsproblem might be impossible. He never proved that this decision problem is
recursively unsolvable. This was done by Church and Turing in their seminal papers published in 1936
[1, 19]. However, already in 1921 he did prove that there are unsolvable decision problems for normal
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systems, on the basis of a thesis similar to Church’s and Turing’s, called Post’s thesis [6, 7]. Unfortu-
nately, he never made any attempt to publish these results at that time. Later, in the forties, he provided
a detailed description of his results from the period 1920–1921 in his Absolutely unsolvable problems
and relatively undecidable propositions - Account of an anticipation [16], a posthumously published
manuscript edited by Martin Davis. More detailed information on these more historical matters can be
found in [6, 7, 8, 18].

Definition 1. (v-tag system) A tag system T consists of a finite alphabet Σ of µ symbols, a deletion
number v ∈ N and a finite set of µ words w0, w1, . . . , wµ−1 ∈ Σ∗ called the appendants, where any
appendant wi corresponds to ai ∈ Σ. A v-tag system has a deletion number v.

In a computation step of a tag system T on a word A ∈ Σ∗, T appends the appendant associated with the
leftmost letter of A at the end of A, and deletes the first v symbols of A.1 This computational process is
iterated until the tag system produces the empty word ε. Note that tag systems are monogenic and thus
deterministic. Following the notation of [21], Ai ` Ai+1 means that Ai+1 is produced from Ai after one
computation step, Ai `n Ai+n that Ai+n is produced after n computation steps from Ai.
To give an example, let us consider the one tag system mentioned by Post with v = 3, 0→ 00, 1→ 1101
[15, 16]. If the initial word A0 = 110111010000 we get the following productions:

110111010000
` 1110100001101
` 01000011011101
` 0001101110100
` 110111010000

The word A0 is reproduced after 4 computation steps and is thus an example of a periodic word. Post
called the behavior of this one tag system “intractable”. Up to now, it is still not known whether this
particular example is recursively solvable, despite its formal simplicity. Post also mentioned that he
studied the class of tag systems with v = 2, µ = 3 and described this class as being of “bewildering
complexity” and as “[...] leading to an overwhelming confusion of classes of cases, with the solution of
the corresponding problem depending more and more on problems of ordinary number theory.” [16].
Post identified three classes of ultimate behavior in tag systems that will be used throughout this paper.

Definition 2. (halt) A tag system T is said to halt on an initial word A0 when there is an n ∈ N such
that T produces the empty word ε after n computation steps on A0, i.e., A0 `n ε in T .

Definition 3. (periodicity) A tag system T is said to become periodic on an initial word A0 if there are
n, p ∈ N such that A0 `n An and An `p An+p = An in T . An is said to be a periodic word in T with
period p.

1It should be noted that we follow Post’s original definition of tag systems, instead of the one that is now commonly used. I.e.
instead of first deleting the first v letters and then tagging the appendant, an appendant is first tagged and then the first v symbols
are deleted. As a consequence, a tag system will not necessarily halt on a given word when its length has become smaller than
v. The proof of the main Theorem only needs some minor changes to be applicable for this slightly different definition.
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Definition 4. (unbounded growth) A tag system T is said to have unbounded growth on an initial word
A0, if for every number n ∈ N there is an i ∈ N such that for every number j > i, any word Aj ,
A0 `j Aj , lAj > n.

Post considered two decision problems for tag systems, which we will call the halting problem and the
reachability problem for tag systems.

Definition 5. (halting problem) The halting problem for tag systems is the problem to determine for a
given tag system T and any initial word A0 whether or not T will halt on A0.

Definition 6. (reachability problem) The reachability problem for tag systems is the problem to deter-
mine for a given tag system T , a fixed initial word A0 and an arbitrary word A ∈ Σ∗, whether or not
there is an n such that A0 `n A in T .

Note that the halting problem is a special case of the reachability problem.
Post never proved that tag systems are recursively unsolvable. It was Minsky who proved the result in
1961 [13], after the problem was suggested to him by Martin Davis, who was a student of Post. He
showed that any Turing machine can be reduced to a tag system with v = 6. The result was improved by
Cocke and Minsky [2, 3, 14]. They proved that any Turing machine can be reduced to a tag system with
v = 2. Maslov generalized this result and proved that for any v > 1 there exists at least one tag system
with an unsolvable decision problem and furthermore proved that any tag system for which v = 1 has a
solvable reachability problem [12]. This last result was also proven independently by Wang [20].
Both µ and v can be regarded as decidability criteria [11] for tag systems, since their solvability depends
on the size of these parameters. Another such criterion is the length of the appendants. Wang proved that
any tag system for which lmin ≥ v or lmax ≤ v has a solvable halting and reachability problem [20].
Post mentions that he proved the solvability of the reachability problem (and thus also of the halting
problem) for the class of 2-tag systems with µ = 2, but, regretfully, never published the proof. However,
he does mention that he used the three classes of ultimate behavior in tag systems he had found. Given
any tag system T with µ = v = 2 and any initial word A0, Post was able to prove that one can decide
in a finite number of steps whether or not T will have unbounded growth on A0. Clearly, if one can
determine for any such T and any initial word A0 it operates on what its ultimate behavior will be one
immediately gets that the reachability problem for this class of tag systems is decidable. A proof of this
result has recently been found. An outline of this proof can be found in [9]. In this paper we will present
the details of this proof.

1.2. Preliminaries

In the remainder of the paper we will use the notations and definitions given in this paragraph.
Let T be a v-tag system in the class of tag systems TS(v, µ) with a deletion number v, µ symbols and
appendants w0, w1, ..., wµ−1. Then:
a. lA denotes the length of the word A.
b. an means that a is repeated n times.
c. lmax denotes the length of the lengthiest appendant wi, lmin the length of the shortest appendant wj ,
0 ≤ i, j < µ.
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d. #ai denotes the total number of occurrences of the symbol ai in the appendants w0, ...wµ−1.
e. An odd number is denoted as ẋ, an even number as ẍ . If a number x can be either even or odd, it is
denoted as x.
f. bx/yc is the largest integer ≤ x/y, dx/ye is the smallest integer ≥ x/y, [x/y] denotes either bx/yc or
dx/ye
g. Given some word W ∈ Σ then W− is W minus its leftmost letter.
h. Given a word A = a0a1...alA−1, we will say that A is entered with shift x by T , when T erases
a0..ax−1 and the first symbol read in A by T is ax.
i. A round of T on a word A is a number of dlA/ve computation steps of T on A. Note that one round
of T on A is exactly the smallest number of computation steps that result in all the letters of A being
deleted by T [20]. For any initial word A0 the word produced after j rounds on A0 will be written as Qj .
j. An s-round of T on a word A = a0a1...alA−1 produces the word:

A′ = waswav+swa2v+s . . . wav(dlA−s/ve)−3+s

The word A′ is thus the result of one round of T on asas+1as+2...alA−1 (A entered with shift s) without
its first (lA − s mod v) letters being deleted. I.e., the result of concatenating the appendants associated
with every letter read in A when entered with shift s. To explain this with an example, let T be the
example provided by Post (Sec. 1.1) and A = 11011101, then the result of one 0-round on A is the word
A′ = 1101110100, the result of one 2-round on A the word A′ = 001101. Note that an s-round on A
gives the same result as a round on A if s = 0 and lA ≡ 0 mod v.
k. The additive complement (x mod y) of a given number x relative to a modulus y is defined as follows:

(x mod y) =

{
y − (x mod y) if x 6= 0 mod y
0 if x ≡ 0 mod y

2. Solvability of the Halting and Reachability Problem of the Class TS(2,2)

In [16] Post remarks that his proof of the solvability of the reachability problem of the class TS(2, 2)
involved “considerable labor”. This is also true for the proof we have been able to establish, involving
the analysis of a large number of cases. One of the major difficulties is that, contrary to classes of Turing
machines TM(m,n), one not only has to cope with an infinite number of initial words for each tag system
in TS(2,2), but one also has to reduce an infinite number of tag systems to a finite number of cases.
In the current proof Post’s approach for proving the decidability of the class TS(2,2) is applied by making
use of the three classes of ultimate behavior for tag systems he identified (See Sec. 1.1). I.e., it is proven
that given an arbitrary tag system T ∈ TS(2, 2) and any initial word A0 ∈ {0, 1}∗, one can decide in a
finite number of steps whether or not T will halt, become periodic or have unbounded growth and we
can thus prove the following Theorem:

Theorem 1. For any given tag system T , if µ = v = 2 then the reachability problem for T is solvable.

Since the halting problem is a special case of the reachability problem, we get the following immediate
corollary from Theorem 1:

Corollary 1. For any given tag system T , if µ = v = 2 then the halting problem for T is solvable.
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In the remainder of this section we will first explain the main method of the proof (Sec. 2.1) and provide
an overview of the general structure of the proof and an explanation of how each of the subcases are de-
termined. This provides an understanding of some of the fundamental differences between the subcases
that need to be addressed in order to prove Theorem 1 (Sec. 2.2). We will then turn to the details of the
actual proof (Sec. 2.3).

2.1. The table method

The basic technique of the proof is called the table method [9]. Intuitively speaking, given a v-tag system
T with alphabet Σ and the appendants w0, ..., wµ−1 this method is used to study all the possible words
A that can be contained in any word Qj produced afer j rounds on some initial word A0. I.e., if A is
produced by the table method, it is possible for T , when started with the proper initial word, to produce
a word of the form XAY , with X,Y ∈ Σ∗.
The table method is an iterative method. During the n-th iteration step of the table method, first v
different words Sn,jv+s, s ∈ {0, ..., v− 1} are produced from each word Sn−1,j 0 ≤ j < pn−1 produced
in the previous iteration step n−1 of the table method. If n−1 = 0 then the words S0,0, S0,1, ..., S0,p0−1

are some fixed set of initial words ∈ Σ∗, usually the appendants.
Every one of the v words Sn,jv+s produced from Sn−1,j is the word that results after one s-round of T
on Sn−1,j . For each of the vpn−1 words thus produced, if Sn,jv+s is equal to ε or to one of the Sx,y, y <
jv + s, x ≤ n it is marked. If all the Sn,jv+s are marked the method halts. If not, then all Sn,jv+s that
have been marked are removed, the pn remaining words are renumbered as Sn,0,, Sn,1, Sn,2, ..., Sn,pn−1

and the next iteration can be started.
The method is called the table method because the results from the method can often best be represented
through tables. To explain the table method and its representation we will apply it to the example of the
3-tag system mentioned in Sec. 1.1 with w0 = 00, w1 = 1101, setting S0,0 = w0, S0,1 = w1. The
following Table shows the first 3 steps of the table method:

hgkjhgkgku

p1,3

jhgkjhg j;jkh kjhkjh jhkjh

jhgkjhg j;jkh kjhkjh jhkjh
jhgkjhg j;jkh kjhkjh jhkjh

w0 w1 w1w1 w1w1w0 w1w1w1 w0w1 ...

S0 w0X w1w1 w1w1w0 w1w1w0w0 w1w1w0w1 w0w1X ...
S1 w0X w1X w1w1w1 w1w1w1X w1w1w1w0 w0w0 ...
S2 εX w0X w0w1 w0w1w0 w0w1w1w1 w1w1X ...
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The table is read as follows. Each pair of iterative steps of the table method is separated in the table
by a double vertical line. The row headed with Sx gives the word produced at iteration step n after one
x-round on the word Sn−1,y at the top cell of a column. I.e., the word produced at step n from a given
word Sn−1,y where the first symbol read in Sn−1,y is the x + 1th symbol from the left (i.e. the leftmost
x symbols in Sn−1,y are deleted without being read).
Columns 2 and 3 give the result for step 1. Since there is only one word left unmarked at step 1, i.e.,
w1w1, we need only one column, column 4, for step 2. For step 2 all vp1 = v words produced are left
unmarked. As a result we need 3 columns for step 3. Now, out of the vp2 = 9 words produced, six
are left unmarked. This table allows us to study this example in more detail and it seems that, for this
specific example, there will always be words left unmarked.
So why is this method such a useful tool? If we apply the table method to the set of appendants
w0, w1, ..., wµ−1 of some tag system T (setting each of the S0,i = wi) this method implies that, if it
halts at a given iteration step n, then T has a decidable reachability problem. This follows from Lemma
1:

Lemma 1. For any tag system T with deletion number v, alphabet Σ and appendantsw0, w1, ..., wµ−1, if
the table method halts after a finite number of steps n when applied to T with each S0,i = wi, 0 ≤ i < µ
then T will always halt or become periodic on any initial word A0 ∈ Σ∗.

Proof:
Let T be a v-tag system with alphabet Σ and corresponding appendants w0, w1, ..., wµ−1 for which the
table method halts after a finite number of steps nwhen applied to T , with each S0,i = wi, 0 ≤ i < µ and
let the union of the appendants and the set of all the different words Si,j that have been produced by the
table method after m steps with 0 ≤ i ≤ m, 0 ≤ j < pi, including ε, be denoted as Sm. It immediately
follows that if the table method halts after n iteration steps, Sn is the finite set of all the possible words
that can be produced from the appendants of T by the table method.
Given an initial word A0 ∈ Σ∗, then, after one round of T on A0 T produces the word:

Q1 = X0S0,i1S0,i2 ...S0,idlA0
/ve−1

withX0 one of the appendantswi without its first (lA0 mod v) letters, each S0,im ∈ S0 = {w0, w1, ..., wµ−1}.
After one more round of T on Q1 T produces the word:

Q2 = X1S1,i1S1,i2 ...S1,idlA0
/ve−1

with each S1,im ∈ S1 and X1 is one of the Si,j ∈ S1 minus its first (lQ1 mod v) letters. Note that the
total number of words S1,im in Q2 is equal to dlA0/ve − 1. The reason for this is that each S0,im in Q1

produces exactly one word S1,im in Q2, i.e., the word that is produced after one s-round on S0,im where
s is determined by the additive complement of the length of the subword preceding S0,im in Q1.
Generally speaking, it easily follows from the table method that after p+1 rounds of T onA0 T produces
the word:

Qp+1 = XpSp,i1Sp,i2 ...Sp,idlA0
/ve−1

with each Sp,im ∈ Sp and Xp is one of the words Si,j ∈ Sp minus its first (lQp mod v) letters. Note that
the total number of words Sp,im in Qp+1 has remained constant.
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Now let us assume that p = n. Since we assumed that the table method halts after n steps it follows for
any word:

Qp+k+1 = Xp+kSp+k,i1Sp+k,i2 ...Sp+k,idlA0
/ve−1

produced after p+ k+ 1 rounds of T on A0, with k ≥ 0 that each Sp+k,im in Qp+k+1 must be one of the
words Si,j ∈ Sp since Sp = Sp+k. Similarly, Xp+k in Qp+k+1, must be one of the Si,j ∈ Sp minus its
first (lQp+k

mod v) letters. It now easily follows that T must either halt or become periodic on A0. This
is the case because the length of any one of the subwords Sp+k,im and the subword Xp+k in any word
Qp+k+1 produced after p + k + 1 rounds of T on A0, k ∈ N is bounded by the length of the lengthiest
word in Sp. Since the length of the possible productions from A0 is thus bounded, T must either halt or
become periodic on A0. ut

The proof of Lemma 1 reveals a clear connection between the actual productions of a tag system T and
the productions of the table method. We also have the following immediate corollary from this proof:

Corollary 1. Given v-tag system T with µ symbols, appendants w0, ..., wµ−1, A0 ∈ Σ∗ and Si, i ∈ N
the union of the appendants and all the different words that have been produced after i iteration steps of
the table method applied to the appendants w0, ..., wµ−1, then for any word Qj , j ≥ i+ 1 produced after
j rounds on A0:

Qj = XjVj

where Xj is either one of the words in Si minus its first (lQj−1 mod v) letters or ε and Vj ∈ {Si}∗

The table method is not only useful if it halts when applied to a given tag system. It can also be used to
prove that a tag system will either halt or have unbounded growth, resulting in a non-terminating table.
This kind of proof is possible because the method also reveals the “structure” of the possible productions
of a given tag system. In general, it should be noted that, although this method is very simple, it is an
important instrument to study tag systems.
On the basis of the table method we can now introduce the following definition:

Definition 7. (s-round) We will say that a given tag system T produces a word ~An after n s-rounds of
T on W , if ~An is one of the words produced at step n of the table method, with p0 = 1, S0,0 = W .

2.2. General structure of the proof

In order to prove Theorem 1 only those tag systems with lmin < 2 and lmax > 2 need to be taken
into account. This follows from Wang’s decidability criterion which proves that any tag system T with
lmin ≥ v or lmax ≤ v has a decidable reachability problem. In the remainder, we assume that lmax =
lw1 , lmin = lw0 . The symmetrical case is equivalent to this case.
It now follows from Wang’s decidability criterion and the fact that µ = 2, that we only need to prove
Theorem 1 for the following words w0:

I w0 = ε

II w0 = 1

III w0 = 0
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These values for w0 determine the three global cases of the proof. Each of these three cases will be split
into several subcases. These are determined by four different parameters: #1, the parity2 of lw1 , lw1 and
the parities of the number of 0 symbols separating consecutive 1 symbols in w1.

2.2.1. Parameter 1: #1

The total number #1 of 1 symbols in the appendants of a given tag system T is the parameter used for
determining the main subcases for each of the three global cases. For each of these three global cases I,
II and III treshold values nI, nII and nIII for #1 are determined. It is these treshold values that allow
us to reduce the infinite number of subcases for each of the main cases to a finite number. It will be
proven that the infinite number of tag systems covered by the three main cases for which #1 ≥ nI (for
Case I), #1 ≥ nII (for Case II) and #1 ≥ nIII (for Case III) always have unbounded growth (except,
possibly, for a determined set of initial words), while the finite number of tag systems determined by the
three gobal cases for which #1 < nI (for Case I), #1 < nII (for Case II) and #1 < nIII (for Case III)
always halt or become periodic (except, possibly, for a determined class of initial words).
The parameter #1 is varied going from 0 up to its treshold value. Capital letters A, B, C,... will be used
to enumerate these subcases.
One of the main reasons for the significance of #1 is that for any tag system T the symbol 1 corre-
sponds with w1, the longest appendant and the only possibility for increasing the length of a given word.
Furthermore, #1 also has an impact on the length of w1.

2.2.2. Parameter 2: The parity of lw1

The parity of lw1 plays a major role in Case I and is used as a parameter to further split-up each of
the main subcases of Case I determined by #1. The parameter is, however, not used in the further
factorization of the subcases for cases II and III.
The reason that lw1 only plays a significant role for Case I is the fact that w0 = ε. This means that any
wordQj produced after j rounds on some initial word is always either equal to wn1 or w−1 w

n
1 with n ∈ N.

I.e., every word Qj is a word consisting entirely of words w1.

2.2.3. Parameter 3: lw1

The next parameter lw1 is only significant with respect to Case II where it is used as a parameter to further
split-up the subcases determined by #1. For tag systems T with w0 = 1 (Case II), the “second-order
effect” of reading a 0 can be an increase in the length of a word. Indeed, since for any such T a 0 symbol
produces a 1 symbol and a 1 symbol produces w1 the effect of reading a 0 symbol can indirectly result
in an increase of the length of a given word. As a consequence, we not only need to determine a treshold
value with respect to #1 but also with respect to lw1 for Case II. This is not necessary for cases I and
III. For Case I, the effect of reading a 0 is the production of ε so it always results in a decrease of the
length of a given word. For Case III, the effect of reading a 0 in a given word Qj is also a decrease of
the length of Qj since two letters are deleted and only one, i.e., 0, is appended.

2The parity of a number x is the property of it being even or odd.
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2.2.4. Parameter 4: The parity of the number of 0 symbols separating consecutive 1 symbols in
w1

The parity of the number of 0 symbols separating consecutive 1 symbols in w1 plays a significant role
in each of the three global cases I, II and III. It is the parameter used to further split-up the subcases
already determined by the other parameters that are relevant for a given case. (For Case I this is the first
and the second parameter, for Case II the first and the third, and for Case III only the first).
The significance of the parity of the number of 0 symbols separating consecutive 1 symbols in w1 has to
do with the fact that, since we are dealing with 2-tag systems, an even number of 0 symbols separating
two 1 symbols implies that always one of the two will be read by the tag system, while an odd number
implies that either both 1 symbols or none of the two 1 symbols will be read inw1. Clearly, this parameter
can only start to play a role if the number of 1 symbols in w1 ≥ 2.
We will now turn to the details of the proof of Theorem 1.

2.3. Proof of Theorem 1

Case I. w0 = ε.
As explained in Sec. 2.2, the parameters used to prove this case are #1, the parity of lw1 and the different
parities of the number of 0 symbols between consecutive 1 symbols in w1. The parity of lw1 only starts
to play a role when #1 > 0 (starting from Case I.B). The parities of the number of 0 symbols between
consecutive 1 symbols in w1 is only relevant once #1 ≥ 2 (starting from Case I.C).

Case I.A. #1 = 0 (w0 = ε).
If #1 = 0 and w0 = ε then w1 = 0lw1 . This immediately implies that any tag system T from this class
must always halt, irrespective of the length of w1. The reason for this is that whatever the initial word A0

the word Q1 produced after one round of T on A0 consists entirely of 0 symbols. We then immediately
have that the word Q2 produced after one more round on Q1 is equal to ε since w0 = ε.

Case I.B. #1 = 1 (w0 = ε).
We split this case into two subcases determined by the parity of lw1 .

Case I.B.1. lw1 ≡ 0 mod 2 (#1 = 1, w0 = ε)
Since #1 = 1 and lw1 ≡ 0 mod 2, either w1 = 0ṙ110ẗ1 or w1 = 0r̈110ṫ1 . Table 2 proves that the table
method halts for any tag system T from this class with w1 = 0ṙ110ẗ1 .

Table 2: w1 = 0ṙ110ẗ1

w0 w1

S0 ε ε

S1 ε w1X

Since the table method halts, T will always halt or become periodic on any initial word A0. The case
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with w1 = 0r̈110ṫ1 is symmetrical to this case.

Case I.B.2. lw1 ≡ 1 mod 2 (#1 = 1, w0 = ε).
Since #1 = 1 and lw1 ≡ 1 mod 2, either w1 = 0ṙ110ṫ1 or w1 = 0r̈110ẗ1 . Table 3 proves the case for
w1 = 0ṙ110ṫ1 .

Table 3: w1 = 0ṙ110ṫ1

w0 w1

S0 ε εX

S1 ε w1X

The table method halts at step 1, all words produced from w0 and w1 being marked. It thus follows that
any tag system T from this class with w1 = 0ṙ110ṫ1 will always either halt or become periodic on some
initial word A0.
The case with w1 = 0r̈110ẗ1 is symmetrical to this case.

Case I.C. #1 = 2 (w0 = ε).
We split the case into two subcases determined by the parity of lw1 . Note that from now on, #1 > 1.
Since w0 = ε, this means that parameter 4 from Sec. 2.2, the parity of the number of 0 symbols separat-
ing consecutive 1 symbols in w1, starts to play its role.

Case I.C.1. lw1 ≡ 0 mod 2 (#1 = 2, w0 = ε).
We split the case into two subcases determined by the parity of the number of 0 symbols between the
two 1 symbols in w1. I.e., a case with w1 = 0r̈110ẍ110ẗ1 (or, equivalently, w1 = 0ṙ110ẍ110ṫ1) and one
with w1 = 0ṙ110ẋ110ẗ1 (or, equivalently, w1 = 0r̈110ẋ110ṫ1).

Case I.C.1.a. w1 = 0r̈110ẍ110ẗ1 or w1 = 0ṙ110ẍ110ṫ1 (#1 = 2, lw1 ≡ 0 mod 2, w0 = ε).
Let w1 = 0r̈110ẍ110ẗ1 . The case is proven by Table 4.

Table 4: w1 = 0r̈110ẍ110ẗ1

w0 w1

S0 ε w1X

S1 ε w1X

Since the table method always halts for this case, it follows that any tag system T from this class will
always either halt or become periodic.The case with w1 = 0ṙ110ẍ110ṫ1 reduces to this case, since the
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table method results in the same productions.

Case I.C.1.b. w1 = 0ṙ110ẋ110ẗ1 or w1 = 0r̈110ẋ110ṫ1 (#1 = 2, lw1 ≡ 0 mod 2, w0 = ε).
Let w1 = 0ṙ110ẋ110ẗ1 . Table 5 proves this case.

Table 5: w1 = 0ṙ110ẋ110ẗ1

w0 w1 w1w1 ... (w1w1)n

S0 ε ε ε ... ε

S1 ε w1w1 w1w1w1w1 .... (w1w1)2n

It easily follows from Table 5 that any tag system T from this case will either halt or have unbounded
growth. So, given some initial word A0, which of the two kinds of behavior will the tag systems have?
Let ~B0 = ε, ~B1 = w2

1. Clearly, if Qj , the word produced after j rounds on A0, is a word of the form
wn1 , then Qj+1 = ~Bn

0 = ε because lw1 is even. Similarly, if Qj is a word of the form w−1 w
n
1 then

Qj+1 = ~B−1
~Bn

1 = w−1 w
2n
1 . From this it immediately follows that if lA0 is even that T will halt after at

most two rounds on A0. If lA0 is odd then Q1 = w−1 w
n
1 and thus it easily follows that T has unbounded

growth on A0.
The case with w1 = 0r̈110ẋ110ṫ1 is symmetrical to this case.

Case I.C.2. lw1 ≡ 1 mod 2 (#1 = 2, w0 = ε).
We need to split the case into two subcases determined by the parity of the number of 0 symbols sep-
arating the two consecutive 1 symbols in w1. I.e., a case with w1 = 0r̈110ẋ110ẗ1 (or, equivalently,
w1 = 0ṙ110ẋ110ṫ1) and a case with w1 = 0ṙ110ẍ110ẗ1 (or equivalently w1 = 0r̈110ẍ110ṫ1).

Case I.C.2.a. w1 = 0ṙ110ẍ110ẗ1 or w1 = 0r̈110ẍ110ṫ1 (#1 = 2, lw1 ≡ 1 mod 2, w0 = ε).
Let w1 = 0ṙ110ẍ110ẗ1 . Table 6 proves that the table method always halts if w1 = 0ṙ110ẍ110ẗ1 and thus
that for this case T will always halt or become perodic.

Table 6: w1 = 0ṙ110ẍ110ẗ1

w0 w1

S0 ε w1X

S1 ε w1X

The case with w1 = 0r̈110ẍ110ṫ1 reduces to this case since the tables resulting from the table method
are, for both cases, identical.
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Case I.C.2.b. w1 = 0r̈110ẋ110ẗ1 or w1 = 0ṙ110ẋ110ṫ1 (#1 = 2, lw1 ≡ 1 mod 2, w0 = ε).
Let w1 = 0r̈110ẋ110ẗ1 . Table 7 proves that the table method always halts if w1 = 0r̈110ẋ110ẗ1 and thus
that for this case T will always halt or become perodic.

Table 7: w1 = 0r̈110ẋ110ẗ1

w0 w1 w1w1

S0 ε w1w1 w1w1X

S1 ε εX w1w1X

The case with w1 = 0ṙ110ẋ110ṫ1 is symmetrical to this case. The only difference is that the results from
Table 7 for shifts S0 and S1 need to be switched.

Case I.D #1 ≥ 3 (w0 = ε).
This case needs to be split in two subcases determined by the parity of lw1 .

Case I.D.1 lw1 ≡ 0 mod 2 (#1 ≥ 3, w0 = ε).
We split the case into two subcases determined by the parity of the number of 0 symbols between con-
secutive 1 symbols inw1, i.e., a case withw1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 , with any ẋi, 0 < i < #1
odd and a case with w1 = 0r110x110x210x3 ...0x#1−110t1 , with at least one xi, 0 < i < #1 that is even.

Case I.D.1.a w1 = 0r110x110x210x3 ...0x#1−110t1 , at least one xi even (w0 = ε,#1 ≥ 3, lw1 ≡
0 mod 2).
Note that for any tag system T from this class either at least two 1 symbols or at least one 1 symbol is
read after one s-round on w1 since w1 contains at least two consecutive 1 symbols that are separated by
an even number of 0 symbols.
The ultimate behaviour of any tag system T from this class can be easily determined. Given w1 one first
needs to determine how many 1 symbols will be read by T in w1 when entered with shift S0 and S1

respectively. Let b0 be the number of 1 symbols read when w1 is entered with shift S0 and b1 the number
of 1 symbols read when w1 is entered with shift S1 and let B0 be the word produced after one 0-round
on w1 and B1 the word produced after one 1-round on w1. Then, since lw1 ≡ 0 mod 2, and w0 = ε, for
any word Qj produced after j > 1 rounds on some initial word A0 we have that Qj = Bm

0 = (w1)mb0

and Qj+1 = Bmb0
0 (if lA0 is even) or B−1 B

m
1 = (wb11 )−wmb11 and Qj+1 = (Bb1

1 )−Bmb1
1 (if lA0 is odd).

This is the reason why the ultimate behavior of some of the tag system T covered by this case depends
on the parity of lA0 . There are two possibilities:

1. b0 ≥ 2, b1 = 1 (or vice versa). If at least one 1 is read in the initial word, T will either have
unbounded growth or become periodic depending on the parity of the initial word. Else T will
halt.

2. b0 ≥ 2, b1 ≥ 2 (or vice versa). T will always have unbounded growth, whatever the parity of the
initial word if at least one 1 is read in the initial word. Else T will halt.
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Case I.D.1.b w1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 , with any ẋi, 0 < i < #1, odd (#1 ≥ 3, lw1 ≡
0 mod 2, w0 = ε)
Note that since all 1 symbols in w1 are separated by an odd number of 0 symbols it immediately follows
that after one s-round on w1 T produces either ε or w#1

1 . From this it immediately follows that T either
halts or has unbounded growth on any word A0 depending on the parity of A0 (see Case I.C.1.b. for
more details).

Case I.D.2. #1 ≥ 3, lw1 ≡ 1 mod 2 (w0 = ε).
The case is split into two subcases determined by the parity of the number of 0 symbols between consec-
utive 1 symbols in w1, i.e., a case with w1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 , with every ẋi, 0 < i < #1
odd and a case with w1 = 0r110x110x210x3 ...0x#1−110t1 for which there is at least one xi, 0 < i < #1,
that is even.

Case I.D.2.a w1 = 0r110x110x210x3 ...0x#1−110t1 , at least one xi even (w0 = ε, #1 ≥ 3, lw1 ≡
1 mod 2)
Note that any tag system T from this class will either read at least two 1 symbols or one 1 symbol in
w1, depending on the shift with which w1 is entered. This immediately implies that T can never halt if
at least one 1 is read in the initial word because the number of w1 words either increases or stays the
same following each round. Now, since lw1 is odd, it follows that after one s-round on w2

1, T produces
wn1 , n ≥ 3. The result of unbounded growth thus immediately follows if the word Q1 produced after one
round on A0 is either wn1 , n ≥ 2 or w−1 w

n
1 , n ≥ 1. This is always the case if at least two 1 symbols are

read in A0. Otherwise, if Q1 = w1 or Q1 = w−1 (only one 1 symbol is read in A0) then it can be easily
checked that Q3 = wm1 ,m ≥ 2 or Q3 = w−1 w

m
1 ,m ≥ 1 and thus we again have unbounded growth.

This means that T will always have unbounded growth on any word A0 if T reads at least one 1 symbol
in A0.

Case I.D.2.b w1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 (#1 ≥ 3, lw1 ≡ 1 mod 2, w0 = ε).
Note that since all 1 symbols in w1 are separated by an odd number of 0 symbols we always have that
T produces either w#1

1 or ε after one s-round on w1. Since lw1 is odd every second word w1 is entered
with a different shift, and this implies that every pair of words w1 results in the production of w#1

1 . Since
#1 ≥ 3 it follows easily that any tag system T from this class will always have unbounded growth on
any initial word A0 if the word Q1 = wm1 ,m ≥ 2 or Q1 = w−1 w

m
1 ,m ≥ 1. It is also easily checked that

T will have unbounded growth on A0 if Q1 = w1 or Q1 = w−1 and Q2 = w#1
1 or Q2 = w−1 w

#1−1
1 . In

all other cases, T halts on A0.

Case II. w0 = 1.
As explained in Sec. 2.2, unlike cases I and III, lw1 is a parameter that needs to be reckoned with for
this case. Also #1 and the different parities of the number of 0 symbols between consecutive 1 symbols
in w1 are used in the proof of this case.
Each subcase defined by #1, will be factorized according to increasing values for lw1 up until a certain
treshold value. Since w0 = 1, the parities of the number of 0 symbols between consecutive 1 symbols in
w1 only start to play a role once #1 > 2 (starting from Case II.C).
Note that the smallest value for lw1 is always equal to 3 for each subcase defined by #1. The reason for
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this is that we only need to take into account those cases with lw1 ≥ 3 because of Wang’s decidability
criterion which states that any tag systems with lmax ≤ v has a decidable reachability problem.
It is trivial to prove that any tag system with w0 = 1 (Case II) always halts on A0 = 0. In what follows
we will thus only consider initial words A0 6= 0.
The following Lemma is an important tool for the proofs of cases II.A.3 and II.B.2-6. The reason for
this is that for each of these cases it can be easily proven that any word Qj produced after j rounds on
the initial word A0 is composed of subwords from a given set such that for any such subword T always
produces a word from that same set in Qj+1.

Lemma 2. Given a v-tag system T with alphabet Σ and corresponding appendants w0, w1, ..., wµ−1,
some initial word A0 ∈ Σ∗ and W = {W1,W1...,Wm} some set of words ∈ Σ∗. If one can prove that
there is an n ∈ N and a set W′ ⊆W such that for any word:

Qj = XjVj Xj ∈ {ε,W−1 ,W
−
2 , ...,W

−
m}, Vj ∈W∗

that contains at least p words from the set W′ the following holds (a) there is always at least one subword
in Qj from the set W from which T produces WiWi′ in Qj+n with Wi,Wi′ ∈ W (b) for any word
Wk ∈ W,WiWi′ 6= Wk, (c) for every other subword in Qj from the set W T produces at least one
word from that same set in Qj+n, and (d) there are at least p words from the set W′ in Qj+n, then T has
unbounded growth on any word A0 from which T produces a word Qj after j rounds.

Proof:
The proof is trivial ut

Case II.A. #1 = 1 (w0 = 1).
The case is split into 4 cases, according to the value of lw1 . Remember that the smallest value for lw1 = 3
because of Wang’s decidability criterion.

Case II.A.1. lw1 = 3 (w0 = 1, #1 = 1).
Note that since lw1 = 3,#1 = 1 and w0 = 1, w1 = 000.
The result is proven through Table 8:

Table 8: Case w1 = 000

w0 w1 w0w0

S0 w1X w0w0 w1X

S1 εX w0X w1X

Since the table method halts, this tag system will always either halt or become periodic on any initial
word A0.
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Case II.A.2. lw1 = 4 (w0 = 1, #1 = 1).
Since lw1 = 4,#1 = 1 and w0 = 1, w1 = 0000. Table 9 proves that the table method always halts for T
and thus that T will always either halt or become periodic on any initial word A0.

Table 9: lw1 = 0000

w0 w1 w0w0

S0 w1 w0w0 w1X

S1 εX w0w0 w1X

Case II.A.3. lw1 = 5 (w0 = 1, #1 = 1).
If lw1 = 5, #1 = 1, w1 = 00000. This tag system always has unbounded growth except for a finite set
of initial words on which T either halts or becomes periodic. This can be proven by applying Lemma 2.
First of all, note that after one s-round on w1 T either produces w3

0 or w2
0. From w2

0 T again produces
w1, from w3

0 T produces either w2
1 or again w1. It is the possibility of producing w2

1 from w1 after two
s-rounds on w1 that allows for unbounded growth in this tag system.
It follows from Corollary 1 that for any word Qj , j ≥ 2 we have that:

Qj = XjVj Xj ∈ {ε, w0, w
−
1 }, Vj ∈ {w2

0, w
3
0, w1}∗

Note that Vj cannot contain a word w0 that is neither preceded nor followed by a word w0. The reason
for this is that w0 can only be produced from w1, but then w0 must be either preceded or followed by at
least one word w0.
It now easily follows that after one round of T onQj every subword inQj from the set {w0, w

−
1 , w1, w

2
0, w

3
0}

will again result in at least one subword from that same set in Qj+1. Furthermore, if Qj contains ei-
ther w2

1 or w−1 w1 then we can prove that also the other conditions of Lemma 2 are met. I.e., for any
such word Qj it can be proven that there is at least one subword in Qj from the set {w−1 , w1, w

2
0, w

3
0}

that results in the production of a new word that consists of at least two words from that same set in
Qj+i, i ∈ {2, 4, 6} and differs from any word in that set (conditions a and b), any other subword in Qj
from the set {w0, w

−
1 , w1, w

2
0, w

3
0} again results in at least one word from that same set in Qj+i (condi-

tion c), Qj+i again contains either w2
1 or w−1 w1 (condition d).

It can be easily checked that if T produces the word Q1 after one round on A0 with Q1 one of the fol-
lowing words w0w1W,w1w0W,w1w1W , or w0w0w0W,W ∈ {w0, w1}∗ then it takes at most four more
rounds to produce a word that contains w2

1 or w−1 w1. The only initial words that do not result in such
words Q1 are: (0), 1, 00, 01, 10, 11, 000, 010, 001, 011, 0000, 0100, 0001, 0101, 00000, 01010, 00010
or 01000. T always becomes periodic on any of these words.
We will now prove that Lemma 2 is indeed applicable for words Qj that contain w2

1 or w−1 w1 at least
once. Let Qj be such a word. Clearly, from w2

1 or w−1 w1 in Qj T produces w5
0 or w5−

0 in Qj+1 and thus
either again w2

1 or w3
1 in Qj+2. If w3

1 is produced in Qj+2 from w2
1 in Qj then all conditions of lemma 2

are met. Indeed, from w2
1 or w−1 w1 in Qj a new word is produced in Qj+2 that is a combination of two

words from the set {w−1 , w1, w
2
0, w

3
0} and different from any of the words from that set (conditions a and

b), every other subword in Qj from the set {w−1 , w1, w
2
0, w

3
0} must result in at least one subword from
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that same set (condition c) and Qj+2 again contains w2
1 (condition d).

If w2
1 reproduces itself in Qj+2 then this means that w5

0 in Qj+1 produced from w2
1 in Qj is entered with

shift 1. We then have thatQj+1 = w4
0Wj+1 orQj+1 = Xj+1Wj+1,1w

5
0Wj+1,2,Wj+1,Wj+1,1,Wj+1,2 ∈

{w2
0, w

3
0, w1}∗. Note that in this last case lXj+1Wj+1,1 is odd since else w5

0 inQj+1 would be entered with
shift 0, thus resulting in the production of w3

1 instead of w2
1 in Qj+2.

The following list gives all the possible words Qj that contain w2
1 or w−1 w1 at least once and from which

T produces the word Qj+1 = w4
0Wj+1. It proves that all conditions of Lemma 2 are met. I.e. there

is an i (i ∈ {2, 4, 6}) such that a subword is produced in Qj+i that is the concatenation of at least two
words from the set {w0, w

−
1 , w1, w

2
0, w

3
0} and is different from any word from that set (conditions a and

b) and Qj+i again contains w2
1 or w−1 w1 at least once (condition d). Note that in order to produce a word

Qj+1 = w4
0Wj+1, lQj must be odd.

(1) Qj = w2
1w1Wj Qj+1 = w4

0w
3
0Wj+1 Qj+2 = Xj+2w1w2

1Wj+2, Xj+2 ∈ {w−1 , w1}
(2) Qj = w2

1w
3
0Wj Qj+1 = w4

0w
2
1Wj+1 Qj+2 = Xj+2w1w5

0Wj+2, Xj+2 ∈ {w−1 , w1}
(3) Qj = w2

1w
2
0Wj Qj+1 = w4

0w1Wj Qj+2 = (2), (9), (11), (12) or (13)
(4) Qj = w−1 w1 Qj+4 = w−1 w2

1

(5) Qj = w−1 w1w1 lQj ≡ 0 mod v Qj+2 = w−1 w1w2
1

(6) Qj = w−1 w1w2
1Wj Qj+1 = w4

0w
5
0Wj+1 Qj+2 = Xj+2w1w3

1Wj+2, Xj+2 ∈ {w−1 , w1}
(7) Qj = w−1 w1w1w3

0Wj Qj+1 = w4
0w

2
0w

2
1Wj+1 Qj+2 = Xj+2w1w1w5

0Wj+2, Xj+2 ∈ {w−1 , w1}
(8) Qj = w−1 w1w1w

2
0Wj Qj+1 = w4

0w
2
0w1Wj+1 Qj+2 = (1) or (7)

(9) Qj = w−1 w1w
3
0 lQj ≡ 0 mod v Qj+2 = w3

1w
2
0

(10) Qj = w−1 w1w
2
0 Qj+1 = w4

0w1 Qj+2 = (9)
(11) Qj = w−1 w1w

5
0 Qj+1 = w4

0w
2
1 Qj+2 = w2

1w
5
0 = (2)

(12) Qj = w−1 w1w6
0Wj Qj+1 = w4

0w
3
1Wj+1 Qj+2 = Xj+2w1w8

0Wj+2, Xj+2 ∈ {w−1 , w1}
(13) Qj = w−1 w1w

5
0w1Wj Qj+1 = w4

0w
2
1w

3
0Wj+1 Qj+2 = Xj+2w1w

5
0w

2
1Wj+2, Xj+2 ∈ {w−1 , w1}

Note that in each equation aboveWj+1 andWj+2 respectively contain at least the same number of words
from the set {w0, w

−
1 , w1, w

2
0, w

3
0} as Wj and Wj+1.

The same result can be proven for words Qj+1 = Xj+1Wj+1,1w
5
0Wj+1,2 by using the same method.

The proof is left to the reader.

Case II.A.4. lw1 > 5 (w0 = 1, #1 = 1).
Note that with lw1 > 5, #1 = 1, w1 = 060#0−6. Table 10 proves the case for lw1 = 6:

Table 10: w1 = 06

w0 w1 w3
0 w2

1 w6
0 w3

1 ... wn1 w3n
0

S0 w1 w3
0 w2

1 w6
0 w3

1 w9
0 ... w3n

0 w
d3n/2e
1

S1 εX w3
0 w1X w6

0 w3
1 w9

0 ... w3n
0 w

b3n/2c
1
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It immediately follows from Table 10 that T will always have unbounded growth on any initial word
A0 6= 0 that results in the production of a word that contains w2

1 (or w−1 w1) at least once. It can be easily
checked that this is the case for any word A0 6= 0 (Note that for every word Q1 produced after one round
on A0 6= 0, Q1 = 1W,Q1 = w1W or Q1 = w−1 W,W ∈ {w0, w1}∗).
It immediately follows from the generalization of Table 10 that any tag system T with lw1 > 6 will
always have unbounded growth on any initial word A0 6= 0.

Case II.B. #1 = 2 (w0 = 1).
We split the case into 6 main cases according to the value of lw1 , i.e., lw1 = 3, lw1 = 4, lw1 = 5, lw1 =
6, lw1 = 7, lw1 > 7. We do not consider cases with lw1 ≤ 3 since it follows from Wang’s decidability
criterion that for any tag systems T , if lmax ≤ v then T has a decidable reachability problem.
It follows from Corollary 1 that for each of the tag systems covered by this case, any word Qj , j ≥ 2
produced after j rounds on A0:

(A) Qj = XjWj , Xj ∈ {ε, ~B−1 , w
−
1 ,

~A−1 },Wj ∈ { ~B1, w1, ~A1}∗

Case II.B.1. lw1 = 3 (w0 = 1, #1 = 2)
It can be determined for any tag system from this class that it will either halt or become periodic. There
are three different tag systems covered by this case, i.e., either w1 = 100, w1 = 010 or w1 = 001. In the
following tables it is shown that the table method halts for all three tag systems, and it thus follows that
all three tag systems will always halt or become periodic on any initial word.

Table 11: Case w0 = 1, w1 = 100

w0 w1 w1w0 w0w1

S0 w1 w1w0 w1w0X w1w0X

S1 εX w0X w0w1 w1w0X

Table 12: Case w0 = 1, w1 = 010

w0 w1 w0w0

S0 w1 w0w0 w1X

S1 εX w1X w1X

Table 13: Case w0 = 1, w1 = 001

w0 w1 w0w1 w1w0

S0 w1 w0w1 w1w0 w0w1X

S1 εX w0X w0w1X w0w1X
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Case II.B.2. lw1 = 4 (w0 = 1, #1 = 2).
There are exactly 4 tag systems T1–T4 covered by this case, i.e., T1 with w1,1 = 1000, T2 with w1,2 =
0100, T3 with w1,3 = 0010 and T4 with w1,4 = 0001. For each of these Ti, Ti either produces ~B1 = 11
or ~A1,i = 1br1/2cw11bt1/2c after one s-round on w1,i.
Let A0 be some initial word. It can be proven that if Ti does not result in the production of a word Qj
that contains at least one word ~A1,i or ~A−1,i after at most 4 rounds on A0 then T is periodic on A0. After
two rounds on A0, T produces (Corollary 1):

Q2 = X2V2 X2 ∈ {ε, ~B−1 , w
−
1,i,

~A−1,i}, V2 ∈ { ~B1, w1,i, ~A1,i}∗

If Q2 does not contain any word ~A1,i or ~A−1,i then the parity of lQ2 is determined by X2 since lw1,i and
l ~B1

are even. I.e., lQ2 is even if X2 = ε, or else, lQ2 is odd. After one more round on Q2, T produces:

Q3 = X3V3 X3 ∈ {ε, ~B−1 , w
−
1,i,

~A−1,i}, V2 ∈ { ~B1, w1,i, ~A1,i}∗

If Q3 does not contain the words ~A1,i or ~A−1,i then the parity of lQ3 is determined by X2 in Q2 since lV2

and lV3 are even and X3 = ε when lQ2 is even and X3 is odd when lQ2 is odd. It now follows that if Q2

and Q3 do not contain any word ~A1,i or ~A−1,i then Q4 = Q2. In order to see this note that every word
w1,i and ~B1 in Q2 is entered with the same shift s (0, when X2 = ε, 1 otherwise) resulting in ~B1 and
w1,i in Q3 respectively. We also have that each word ~B1 and w1,i in Q3 will be entered with the same
shift s resulting in w1,i and ~B1 respectively in Q4 and X4 = X2. We thus have that Q2 = Q4.
We will now prove that Ti always has unbounded growth on any word Qj that contains ~A1,i or ~A−1,i at
least once by applying Lemma 2. Note first of all that condition c is met. I.e., for any such word Qj
every subword in Qj from the set { ~B1, w1,i, ~A1,i, ~B

−
1 , w

−
1,i,

~A−1,i} will result in the production of at least
one word from that same set in Qj+1.
Now, for each Ti we have the following words ~A1,i: ~A1,1 = ~A1,2 = w11, ~A1,3 = ~A1,4 = 1w1. After
one s-round on ~A1,1 and ~A1,4 T produces either ~A2,1 = ~A1,1w1,1 and ~A2,4 = w1,4

~A1,4, respectively,
or ~B2,1 = ~B2,4 = ~B1. After one s-round on ~A1,2 and ~A1,3 T produces either ~A2,2 = ~B1w1,2 and
~A2,3 = w1,3

~B1 or ~B2,2 = ~A1,2 and ~B2,3 = ~A1,3. Since each l ~A1,i
is odd, it now easily follows that for any

wordQj that contains at least two words ~A1,i (or one word ~A−1,i and at least one word ~A1,i) there is always
at least one word ~A1,i inQj that results in two words from the set { ~B1, w1,i, ~A1,i, ~B

−
1 , w

−
1,i,

~A−1,i} inQj+1

and Qj+1 will again contain at least one word ~A1,i. The reason for this is that the only words between
two consecutive words ~A1,i are words ~B1 and words w1,i. This means that every two words ~A1,i in Qj
are separated by a subword of even length and thus, when the first ~A1,i is entered with shift 0, the second
will be entered with shift 1 and vice versa. It thus follows that at least one word ~A1,i in Qj will result in
~A2,i in Qj+1 (Note that ~A2,i is different from any words in the set { ~B1, w1,i, ~A1,i, ~B

−
1 , w

−
1,i,

~A−1,i}). Thus
conditions a, b and c of Lemma 2 are met for words Qj that contain ~A1,i at least twice (or one word ~A−1,i
and at least one word ~A1,i). Furthermore, Qj+1 contains at least one word ~A1,i (or ~A−1,i).
The same can be proven if Qj contains only one word ~A1,i or ~A1,i. We can furthermore prove that for
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these words Qj property d is met. We will only prove the result for T1. The proofs for T2–T4 follow the
same method.
Note that T1 produces ~A1,1 after one 0-round and ~B1 after one 1-round on w1,1. Now, given a word Qj
that contains only one word ~A1,1 (or one word ~A−1,1), then:

Qj = XjVj ~A1,1Wj (or Qj = ~A−1,1Wj) Xj ∈ {ε, ~B−1 , w
−
1,1}, Vj ,Wj ∈ { ~B1, w1,1}∗

If Xj = ε and Qj 6= ~A−1,1Wj then T produces the word ~A2,1 = ~A1,1w1,1 in Qj+1 and thus conditions a,
b,c and d of Lemma 2 are met. I.e., there is at least one subword inQj from the set { ~A1,1, ~B1, w1,1, ~A

−
1,1,

~B−1 , w
−
1,1}

from which T produces a new word that is the concatenation of two words from that same set in Qj+1,
this word is different from every word from that set and Qj+1 again contains at least one word ~A1,1.
If ~A1,1 in Qj is entered with shift 1 then lQj is even. This means that after one round on Qj T produces:

Qj+1 = Vj+1
~B1Wj+1 Vj+1 ∈ { ~B1, w1,1}∗,Wj+1 ∈ {w1,1, ~A1,1}

If Wj contains at least one word w1,1 then Wj+1 must contain at least one word ~A1,1 (Note that if ~A1,1

in Qj is entered with shift 1 then the leftmost w1,1 in Wj is entered with shift 0). It then easily follows
that T1 will produce at least one word ~A2,1 in Qj+2 since the leftmost word ~A1,1 in Qj+1 will be entered
with shift 0 and thus conditions a–d of Lemma 2 are met.
If Wj+1 contains no word ~A1,1 then lQj+1 is even. In that case, if Qj+1 contains at least one word w1,1

then it easily follows that it takes two more rounds on Qj+1 to produce at least one word ~A2,1 in Qj+3

(Note that since lQj+1 is even, the first word ~A1,1 produced in Qj+2 will be entered with shift 0). Finally,
if Qj+1 contains no word w1,1 then, Qj+1 = ~Bn

1 , n ≥ 1 and it easily follows that it takes three more
rounds on Qj+1 to produce at least one word ~A2,1 in Qj+4. Clearly, also in these last cases conditions
a–d of Lemma 2 are met.
The result of unbounded growth now easily follows for words Qj that contain ~A1,1 or ~A−1,1 at least once
since any such word always satisfies conditions a–d of Lemma 2.

Case II.B.3. lw1 = 5 (w0 = 1, #1 = 2).
There are exactly 5 tag systems T5–T9 covered by this case. For any Ti, w1,i = 0r110t1 and after one
s-round on w1,i Ti either produces ~B1 = 1dr1e+dt1e or ~A1,i = 1br1/2cw11bt1/2c. We split the case ac-
cording to the value of dr1/2e+ dt1/2e, i.e., either dr1/2e+ dt1/2e = 2 or dr1/2e+ dt1/2e = 3.
Note that for each of these Ti, any word Qj , j ≥ 2 is of the form (A).

Case II.B.3.a. ~B1 = 11 (w0 = 1, #1 = 2, lw1 = 5).
There are exactly 3 tag systems covered by this case, i.e., T5 with w1,5 = 10000, T6 with w1,6 = 00100
and T7 with w1,7 = 00001. It is easily proven for each of these tag systems that for any word A0 6= 0
it takes at most 6 rounds on A0 to produce a word Qj that contains at least one word ~A1,i or ~A−1,i. The
reason for this is that lw1 is odd (note that if Q2 contains at least two words ~B1 or w1,i then it easily
follows that it takes at most two rounds on Q2 to produce a word that contains at least one word ~A1,i or
~A−1,i).
We prove the case by showing that all conditions of Lemma 2 are met for any word Qj , j ≥ 2 of form
(A) that contains at least one word ~A1,i or ~A−1,i. First of all, note that it easily follows that condition (c) is
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satisified, i.e., every word from the set { ~B−1 , w
−
1 ,

~A−1 ,
~B1, w1, ~A1} will again result in at least one word

from that same set in Qj+1.
The values for the words ~A1,i are ~A1,5 = w1,5

~B1, ~A1,6 = 1w1,61, ~A1,7 = ~B1w1,7. Now, for any word
Qj = ~A1,i or Qj = ~A−1,i it can be easily computed that it takes at most 2 rounds of T on Qj to produce
a word that again contains ~A1,i and at least one more word from the set { ~B−1 , w

−
1 ,

~A−1 ,
~B1, w1, ~A1}.

This means that we only need to consider words Qj that contain either one of the following words as a
subword:

(a) = ~B1
~A1,i (or ~B−1 ~A1,i)

(b) = ~A1,i
~B1 (or ~A−1,i ~B1

(c) = w1,i
~A1,i (or w−1,i ~A1,i)

(d) = ~A1,iw1,i (or ~A−1,iw1,i

(e) = ~A2
1,i (or ~A−1,i ~A1,i)

For any tag system T5–T7 it can be easily checked that if Qj contains at least one of the subwords
(a)–(e) then it takes at most three rounds of T on Qj to produce from each of these subwords again
one of the words (a)–(e) plus at least one word from the set { ~B1, w1,i, ~A1,i, ~B

−
1 , w

−
1,i,

~A−1,i} in the word
Qj+i, 0 < i ≤ 3. It thus easily follows that conditions a–d of Lemma 2 are satisfied and the result of
unbounded growth immediately follows.

Case II.B.3.b. ~B1 = 111 (w0 = 1, #1 = 2, lw1 = 5).
There are 2 tag systems covered by this case, i.e., T8 with w1,8 = 01000, T9 with w1,9 = 00010. Now,
given some initial word A0 6= 0 it is easily checked that either Ti is periodic on A0 or it takes at most
4 rounds on A0 to produce a word that contains at least one word ~A1,i or ~A−1,i. Both tag systems are
periodic on w1,i and 11.
We will now prove that Ti always has unbounded growth on any word Qj that contains ~A1,i or ~A−1,i
at least once by applying Lemma 2. The main difficulty with these two tag systems is that after one
s-round on ~A1,i ( ~A1,8 = w1,81, ~A1,9 = 1w1,9) Ti either produces a word ~A2,i that contains w1 and ~A1,i

or ~B1 = 111. We will only consider T8 since w1,9 is the mirror image of w1,8 and the proof of T9 thus
easily reduces to the proof of T8.
Now, it is easily computed that for any word Qj = ~A1,8 or Qj = ~A−1,8 it takes at most 3 rounds of T8 on
Qj to produce a word that contains ~A−1,8 and either ~B1 or w1,8. We thus only need to consider words Qj
that contains one of the words (a)–(e) with i = 8 as a subword.
It can be easily verified that if Qj contains at least one of the subwords (b)–(e) then it takes at most
three rounds on Qj to produce from any of these subwords (b)-(e) again one of he words (a)–(e) and
at least one more word from the set { ~B1, w1,8, ~A1,8, ~B

−
1 , w

−
1,8,

~A−1,8} in the word Qj+i, 0 < i ≤ 3.
The problematic cases are words that contain only one word ~A1,i and ~A1,i is preceded by ~B1. There
is no problem when (a) is entered with shift 0: after one 0-round on (a) T8 produces w2

1,8
~A1,8w1,8.

However, when (a) is entered with shift 1, then T8 produces w1,8
~B1, after one 0-round on w1,8

~B1 T8

produces ~B1w1,8 and after one 1-round on ~B1w1,8 T8 again produces w1,8
~B1. This means that there is

not necessarily an n such that the subword (a) results again in one of the words (a)–(e) and at least one
more subword from the set { ~B1, w1,8, ~A1,8, ~B

−
1 , w

−
1,8,

~A−1,8} in Qj+n so we need to consider this special
case separately.
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Now, if Qj = (a)− then it can be easily checked that Qj+3 = w2
1,8
~A1,8. If Qj 6= (a)− but contains

(a) and (a) is followed by any word ~B1, w1,8 or ~A1,8 or (a) is preceded by ~A1,8 then Qj contains at
least one of the words (b)–(e). If (a) is preceded by ~B1 then it is easily computed that it takes at
most two rounds on Qj to produce from ~B2

1
~A1,8 one word (a)–(e) and at least one word from the set

{ ~B1, w1,8, ~A1,8, ~B
−
1 , w

−
1,8,

~A−1,8}. A similar result is easily proven when Qj contains (a) and ~B2
1 (note

that after one s-round of T8 on ~B2
1 T8 produces w3

1,8). The only remaining possibilities are that Qj is one
of the following words:

Qj = Xjw
n1
1 ( ~B1w1,8)n1 ...wni

1 ( ~B1w1,8)ni ~B1
~A1,8 Xj ∈ {ε, ~B−1 w1,8, w

−
1,8}, nj ∈ N

Qj = Xjw
n1
1 (w1,8

~B1)n1 ...wni
1 (w1,8

~B1)ni ~A1,8 Xj ∈ {ε, w−1,8 ~B1, w
−
1,8}, nj ∈ N

It can be easily checked for each of these possibilities that it takes at most 3 rounds to produce a word
Qj+i, 0 < i ≤ 3 such that Qj+i contains at least one of the words (b)–(e). It now easily follows from
Lemma 2 that T8 always has unbounded growth on any word A0 6= 0 for which T8 produces a word that
contains at least one word ~A1,i or ~A−1,i.

Case II.B.4. lw1 = 6 (w0 = 1, #1 = 2).
There are 6 tag systems T10–T15 covered by this case, i.e., T10 with w1,10 = 100000 and T11 with
w1,11 = 010000, T12 withw1,12 = 001000, T13 withw1,13 = 000100, T14 withw1,14 = 000010,T15 with
w1,15 = 000001. For each of these Ti, Ti either produces ~B1 = 111 or ~A1,i = 1br1/2cw11bt1/2c after one
s-round on w1,i. For each of these Ti, Ti either produces ~B1 = 111 or ~A1,i = 1br1/2cw11bt1/2c after one
s-round onw1,i. Also, every wordQj is a word of the form (A). From this, it easily follows that condition
c of Lemma 2 is satisfied. I.e., for any of the subwords in Qj from the set { ~B−1 , w

−
1 ,

~A−1 ,
~B1, w1, ~A1}

Ti again produces a word from that same set in Qj+1. We can also prove that all the other conditions of
Lemma 2are met.
It is easily proven that T10–T15 always have unbounded growth on any word Qj that contains one of the
subwords (a)-(e), 10 ≤ i ≤ 15 or:

(f) w2
1,i (or w−1,iw1,i)

(g) w1,i
~B1 (or w−1,i ~B1)

(h) ~B1w1,i (or ~B−1 w1,i)
(i) ~B2

1 (or ~B−1 ~B1)

Indeed, it can be verified that if one of these subwords (a)-(i) is in Qj then it takes at most two rounds
on Qj to produce from one of these subwords (a)-(i) again one of these subwords and at least one more
word from the set { ~B1, w1,i, ~A1,i, ~B

−
1 , w

−
1,i,

~A−1,i} in the word Qj+i, 0 < i ≤ 2.
It is furthermore easily proven that for any word A0 6= 0 it takes but a finite number of rounds of Ti on
A0 to produce a word that contains at least one of the subwords (a)-(i). Hence it easily follows that each
Ti always has unbounded growth on any initial word A0.

Case II.B.5. lw1 = 7 (w0 = 1, #1 = 2).
There are 7 tag systems covered by this case. For any Ti, w1,i = 0r110t1 and after one s-round on w1,i

Ti either produces ~B1 = 1dr1e+dt1e or ~A1,i = 1br1/2cw11bt1/2c. We split the case according to the value
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of dr1/2e+ dt1/2e, i.e., either dr1/2e+ dt1/2e = 3 or dr1/2e+ dt1/2e = 4

Case II.B.5.a. ~B1 = 111 (w0 = 1, #1 = 2, lw1 = 7).
There are 4 tag systems covered by this case, i.e., T16, w1,16 = 1000000, T17 with w1,17 = 0010000,
T18 with w1,18 = 0000100 and T19 with w1,19 = 0000001. These tag systems always have unbounded
growth on any initial word A0 6= 0. The proof is similar to the proof of unbounded growth for T10–T15

and thus we leave it to the reader.

Case II.B.5.b. ~B1 = 1111 (w0 = 1, #1 = 2, lw1 = 7).
There are exactly 3 tag systems T20 – T22 for which ~B1 = 1111, i.e., T20 with w1,20 = 0100000, T21

with w1,21 = 0001000 and T22 = 0000010. After one s-round on w1,i each of these Ti either produces
~B1 = 1111 or ~A1,i = 1br1/2cw11bt1/2c. It is easily proven that every Ti has unbounded growth on any
word A0 6= 0. The reason for this is that, on the one hand, it easily follows that l ~A1,i

> lw1,i and, on

the other hand, every word ~B1 produced from one word w1,i always results in the production of two
words w1,i, whatever shift ~B1 is entered with. Thus, once w1 is produced from the initial word A0 then
T must have unbounded growth on A0. It can be easily checked that it takes at most 2 rounds on any ini-
tial wordA0 6= 0 to produce a word that contains w1 at least once, hence the result of unbounded growth.

Case II.B.6. w1 > 7 (w0 = 1, #1 = 2).
Let T be a tag system covered by Case II.B.6. After one s-round on w1 T either produces ~B1 = 1n or
~A1,i = 1br1/2cw11bt1/2c. However, since lw1 > 7 and w1 contains only one 1 symbol, it easily follows
that n ≥ 4 in ~B1 = 1n. The result of unbounded growth thus easily follows (See Case II.B.5.b).

Case II.C. #1 > 2 (w0 = 1).
We split the case into two main cases according to the value of lw1 , i.e.,lw1 = 3 and lw1 > 3. We do not
take into account the case with lw1 < 3 due to Wang’s decidability criterion.

Case II.C.1. lw1 = 3 (#1 > 2, w0 = 1).
There are exactly four tag systems in this class depending on the value of w1, i.e., w1 = 111, w1 =
101, w1 = 110 and w1 = 011. We need to study each of these tag systems separately.

Case II.C.1.a. w1 = 111 (lw1 = 3,#1 > 2, w0 = 1).
This tag system T will always have unbounded growth on any word A0 6= 0. The reason for this is that
for this case any word Qj produced after j rounds on A0 consists entirely of 1 symbols and with every
computation step, two 1 symbols are appended and only 1 deleted.

Case II.C.1.b. w1 = 101 (lw1 = 3,#1 > 2, w0 = 1).
We will prove that this tag system always has unbounded growth on any initial word A0 6= 0. Note that
T either reads two 1 symbols or one 0 during one s-round on w1. In order to prove the case we apply the
table method for 2 iterations on w1:

Table 14: w1 = 101
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w1
~A1

~A2
~B2

S0
~A1 = w2

1
~A2 = ~A1

~B1
~A3 = ~A2w1

~B3 = w1
~B2

S1
~B1 = w0X ~B2 = ~B1

~A1
~B2X ~A2X

It is easily checked that T is periodic on the words w−1 and ~B1. It can also be checked that it takes at
most 3 rounds on any initial word A0 that differs from these two periodic words and A0 6= 0 before
T produces a word that contains ~A1 or ~A−1 at least once. Since it follows from Table 14 that after one
s-round on ~A1 T produces either ~A2 or ~B2 and after one s-round of T on ~A2 or ~B2 T always produces
a word that contains either ~A2 or ~B2 it follows that any word Qj , j > 3 always contains ~A2, ~A−2 , ~B2 or
~B−2 at least once. Furthermore, for any such word Qj , j > 3 it is impossible that Qj contains w2

0 as a
subword. I.e., there is no combination of words w1 and w0 that results in w2

0 (Note that the only way to
produce w0 is when w1 is entered with shift 1). We can now define Qj as follows:

Qj = XjVjYj Xj ∈ {w−1 w0, w
−
1 w1, ε}, Yj ∈ {w0, w1, ε}

Vj ∈ {w0w1, w1w0, w
2
1,
~A2, ~B2}∗

with the following restrictions on Xj , Vj and Yj : (1) if Xj = w−1 w0 then the left end of Vj cannot be
w0w1 or ~B2 (2) no subword ~B2 or w0w1 in Vj can be preceded by ~A2 or w1w0 and, finally (3) if Yj is
w0 then the right end of Vj cannot be ~A2 or w1w0.
We will now prove that T always has unbounded growth on any such word Qj . In order to prove this,
first of all note that after one round on Qj every one of the subwords in XjVj , i.e., words from the set
{w−1 w0, w

−
1 w1, w0w1, w1w0, w

2
1,
~A2, ~B2}, results in at least one subword from that same set in Qj+1

which is at least as long as the original word in Qj . Furthermore, Qj+1 is of the same form as Qj again
containing at least one word ~A2, ~A−2 , ~B2 or ~B−2 . This follows from the productions of table 14. It also
follows immediately that the length of Yj , which is either equal to w0, w1 or ε, is bounded.
Now, if Qj is one of the words ~A2, ~A−2 , ~B2 or ~B−2 then it is easily checked that it takes at most 2 rounds
of T on Qj to produce a word that again contains ~A2, ~A−2 or ~B2 or ~B−2 and at least one word w0 or w1.
This means that we only need to study words Qj that contain at least one of the following words as a
subword:

(1) ~A2w0 = w2
1w

2
0 w0

~A2 = w0w
2
1w0

~A−2 w0 = w−1 w1w
2
0

(2) ~A2w1 = w2
1w0w1 w1

~A2 = w3
1w0

~A−2 w1 = w−1 w1w0w1 w−1
~A2 = w−1 w

2
1w0

(3) ~B2w0 = w0w
2
1w0 w0

~B2 = w2
0w

2
1

~B−2 w0 = w2
1w0

(4) ~B2 ~w1 = w0w
3
1 ~w1

~B2 = w1w0w
2
1

~B−2 w1 = w3
1 w−1

~B2 = w−1 w0w
2
1

It is easily checked that if Qj contains any of the subwords (1)–(4) then it takes at most 3 rounds of
T on Qj to produce from any of these subwords again one of the words (1)–(4) and at least one more
subword from the set {w1, ~B1w1, w1

~B1} (Note that the words ~A2w0, ~A−2 w0 and w0
~B2 contain w2

0 as a
subword, so we do not need to take them into account. If Qj contains ~A−2 w1, w−1 ~A2, ~B−2 w0, ~B−2 w1 or
w−1

~B2 these words are at the left end of Qj and are thus entered with shift 0).
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It now easily follows that T always has unbounded growth on any wordQj that contains one of the words
(1)-(4) at least once.

Case II.C.1.c. w1 = 110 (lw1 = 3,#1 > 2, w0 = 1).
It can be proven that this tag system is periodic on any word A0 6= 0 from which T produces (w11)n

after one round and has unbounded growth on any other initial word A0 6= 0. Note that T always reads
one symbol 1 during one s-round on w1. This immediately implies that T cannot halt on any word A0

that results in the production of a word that contains at least one w1 or one w−1 . It can be easily checked
that it takes at most two rounds of T on A0 6= 0 to produce a word that contains w1, thus T can never
halt on any word A0 6= 0. In order to prove the case, we need to apply the table method to w1.

Table 15: w1 = 110

w1
~A1

S0
~A1 = w11 ~A1X

S1
~B1 = w1X ~B2 = w2

1

Given an initial word A0 6= 0, then it follows from Table 15 and Corollary 1 that any word Qj , j > 1:

Qj = XjVj Xj ∈ {ε, w−1 , ~B
−
2 ,

~A−1 }, Vj ∈ {w1, ~B2, ~A1}∗

If Qj = ~An1 , n ∈ N then Qj is periodic. The reason for this is that ~A1 reproduces itself when entered
with shift 0 and l ~A1

is even.

We can now prove that if Qj 6= ~An1 , n ∈ N, j > 1 then T has unbounded growth on Qj . We then have:

(1) Qj = w−1
(2) Qj = w−1

~An1 , n ∈ N
(3) Qj = ~A−1

~An1 , n ∈ N
(4) Qj = XjVjw1YjWj Xj ∈ {ε, w−1 , ~B

−
2 ,

~A−1 }, Vj ∈ { ~A1}∗, Yj ∈ {ε, w1, ~B2, ~A1},Wj ∈ {w1, ~B2, ~A1}∗

If Qj is one of the words of the forms given in (1), (2) or (3) then it can be easily checked that the word
Qj+1 produced after one round on Qj is a word of the form given in (4) and lQj+1 > lQj . We thus only
need to consider words Qj that are words of form (4).
It easily follows that T must have unbounded growth on any word of form (4). Note first of all that none
of the subwords in Xj , Vj and Wj can become shorter. This follows from Table 15.
Now, if Yj = w1 or Yj = ~B2 we immediately have that lQj+1 > lQj since whatever shift w1Yj is then
entered with, it results in the production of a subword in Qj+1 that is lengthier than w1Yj (see Table 15).
Furthermore Qj+1 is again a word of the form (4).
If Yj = ~A1 and w1

~A1 is entered with shift 0 T produces ~A1w
2
1 in Qj+1 from w1

~A1 in Qj . We thus again
have that lQj+1 > lQj and Qj+1 is again a word of form (4). If, on the other hand, w1

~A1 is entered with
shift 1 then T reproduces w1

~A1 in Qj+1. However, if w1
~A1 in Qj is entered with shift 1 then it must be
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the case that either Xj = ~B−2 or Xj = ~A−1 since lw−1 and l ~A1
are even and we have assumed that w1

~A1

is entered with shift 1. But then it must be the case that lQj+1 > lQj since after one round on Qj , ~B−2 in
Qj results in w1

~A1 (or w−1 ~A1) and ~A−1 results in w2
1 (or w−1 w1 ). Since lw−1 ~A1

> l ~B−2
and lw−1 w1

> l ~A−1
,

we again have that lQj+1 > lQj and Qj+1 is again a word of form (4).
Finally, if Yj = ε and w1Yj is entered with shift 0 then T produces ~A1 from w1 in Qj , when entered
with shift 1, T produces w1 in Qj+1 from w1 in Qj . If w1Yj is entered with shift 0 this either means
that Qj = w1, Qj = ~An1w1 or Qj = w−1

~An1w1. In the first case it follows that Qj+1 = ~A−1 and thus
Qj+2 = w−1 w1. We then have that lQj+2 > lQj andQj+2 is again a word of form (4). In the second case,
if Qj = ~An1w1 then it easily follows that Qj+1 = ~A−1

~An1 and thus Qj+2 = ~B−2
~Bn

2 and, since l ~B2
> l ~A1

that lQj+2 > lQj and Qj+2 is again a word of form (4). If Qj = w−1
~An1w1 then Qj+1 = w−1

~An+1
1 but

then Qj+2 = w1
~An+1 and thus Qj+3 = ~A−1

~Bn+1
2 . Clearly, lQj+3 > lQj and Qj+3 is again a word of

form (4).
If Yj = ε and w1Yj in Qj is entered with shift 1, then T reproduces w1Yj in Qj+1. However, then we
again have that either Xj = ~B−2 or Xj = ~A−1 and thus that we still have that lQj+1 > lQj and Qj+1 is
again a word of form (4).
It now follows that T always has unbounded growth on any word A0 6= 0 for which the word Q2 pro-
duced after two rounds on A0 is not a word ~An1 , n ∈ N.

Case II.C.1.d. w1 = 011 (lw1 = 3,#1 > 2, w0 = 1).
The proof of this case is very similar to the proof of Case II.C.1.c. The reason for this is that w1 = 011
is the mirror image of w1 = 110. As a consequence the words that can be produced through the table
method from w1 are symmetrical to the words produced from w1 of Case II.C.1.c. through the table
method.

Case II.C.2. lw1 > 3 (w0 = 1, #1 > 2).
We split the case into two cases, determined by the parity of the number of 0 symbols between con-
secutive 1 symbols, i.e., w1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 , with any ẋi, 0 < i < #1, odd and
w1 = 0r110x110x2 ...0x#1−110t1 , with at least one xi, 0 < i < #1 even.

Case II.C.2.a. w1 = 0r110ẋ110ẋ210ẋ3 ...0ẋ#1−110t1 (w0 = 1, #1 > 2, lw1 > 3).
Note that since all 1 symbols in w1 are separated by an odd number of 0 symbols, T will either read all
1 symbols in w1 or no 1 in w1 during one round on w1. We split the case into two cases: lw1 = 4 and
lw1 > 4.

Case II.C.2.a.1. lw1 = 4 (w0 = 1, #1 > 2).
There are two possible tag systems in this class: either w1 = 1010, or w1 = 0101. It is easily proven for
both tag systems that they either become periodic or have unbounded growth on any word A0 6= 0. We
will only consider the case with w1 = 0101 as the other case is symmetrical to this case.
First, note that after one 0-round on w1 T produces ~B1 = 11, after one 1-round, T produces w2

1. It easily
follows that for any word Qj , j > 1 produced after j rounds on A0 we have:

Qj = XjVj Xj ∈ {ε, ~B−1 , w
−
1 }, Vj ∈ { ~B1, w1}∗
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Now, since lw1 and ~B1 are even it easily follows that if Xj = ε then T is periodic on Qj . It also
follows that if Xj 6= ε then T has unbounded growth on Qj . Indeed, if Xj ∈ { ~B−1 , w

−
1 } then every

word w1 in Qj produces w2
1 in Qj+1 and every word ~B1 produces w1 in Qj+1 and thus we have that

lQj+1 > lQj . Furthermore, since lQj is odd, we again have thatXj+1 ∈ { ~B−1 , w
−
1 } and thus lQj+1 is odd.

Case II.C.2.a.2. lw1 > 4 (w0 = 1, #1 > 2.) It is easily proven that any tag system T in this class will
always have unbounded growth on any initial word A0 6= 0. This follows from Cases II.B.i, i > 2 where
it was proven that any tag system with lw1 > 4,#1 = 2 always has unbounded growth on any initial
word A0 6= 0 except for the tag systems with w1 = 01000 and w1 = 00010 for which there are two
different periodic words. However, the only reason why these two tag systems can be periodic is that
the word ~A1 contains only one word w1. Clearly, this is impossible for the tag systems covered by Case
II.C.2.a.2. Indeed, if ~B1 = 111 for this case then ~A1 must contain at least two words w1.

Case II.C.2.b. w1 = 0r110x110x210x3 ...0x#1−110t1 , with at least one xi even (w0 = 1, #1 > 2, lw1 >
3).
It is easily proven that any tag system from this class always has unbounded growth on any wordA0 6= 0.
First of all, it is trivial to prove that it takes at most two rounds of T on A0 to produce a word Qj that
contains at least one word w1. Now, depending on the shift w1 is entered with, either at least two 1
symbols are read (thus resulting in the production of two words w1) or at least one symbol 1 is read.
If only one 1 is read this must result in the production of one word w1 and at least one word w0 (since
lw1 > 3). In other words, whatever shift w1 is entered with it always results in the production of a word
that is lengthier than lw1 and that word again contains w1. Hence the result of unbounded growth.

Case III. w0 = 0.
As explained in Sec. 2.2, the only parameters used to determine the several subcases of Case III are
parameter 1, the total number of 1 symbols #1 in the two appendants, and parameter 4, the parity of the
number of 0 symbols separating consecutive 1 symbols in w1. An important feature of tag systems T of
this case is the changes in the parity of the number of 0 symbols separating consecutive 1 symbols in w1

with every new s-round on w1. To see this, take for example the tag system with w1 = 101010100. After
one 0-round on w1 T produces the word ~A1 = w1w1w1w10, after one 1-round T produces 000. Now,
since the number of 0 symbols between the rightmost 1 in the first, second and third w1 in ~A1 and the
leftmost 1 in the second, third and last w1 in ~A1, respectively, is even, it immediately follows that what-
ever shift ~A1 is entered with it results in the production of a word that contains ~A1 twice. This implies
that this tag system always has unbounded growth on any initial word A0 that results in the production
of a word that contains ~A1 at least once. If, on the other hand, w1 = 10101010 then this tag system
will either halt or have unbounded growth. The reason for this is that the distance between consecutive 1
symbols in the word produced after one 0-round on w1 will always remain odd.
In the remaining sections any sequence of 0 symbols 0i will be represented as i to avoid compli-
cated notations. For any tag system T with #1 > 0 the word w1 will be represented as w1 =
t11x11x21...x#1−11r1 where r1 and t1 denote the number of 0 symbols to the left-hand side of the
leftmost 1 in w1 and to the right-hand side of the rightmost 1 in w1, respectively; xi stands for the
sequence of 0 symbols separating consecutive 1 symbols in w1. Indexed variables ki represent some
sequence of 0 symbols of length ki.
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Let T be a tag system with #1 > 0, ~A0 = w1. Since #1 > 0 it must be the case that after n ∈ N
s-rounds on w1 at least one word ~An is produced that again contains at least one word w1. In what
follows any such word ~An will be represented as:

~An = [X1/2n][X2/2n−1]...[Xn−1/4][Xn/2]w1kn1w1kn2 ...knjw1[Yn/2][Yn−1/4]...[Y2/2n−1][Y1/2n]

Now, let:

~Ai = [X1/2i][X2/2i−1]...[Xi−1/4][Xi/2]w1ki1w1ki2 ...kijw1[Yn/2][Yi−1/4]...[Y2/2i−1][Y1/2i]

be some word from which ~An is produced after n s-rounds with ~A0 = w1. Then each Xi in ~An
represents the total number of 0 and 1 symbols erased in w1ki1w1ki2 ...kijw1 to the left of the leftmost
1 read in ~Ai−1, and each Yi in ~An represents the total number of 0 and 1 symbols erased to the right of
the rightmost 1 that is read in ~Ai−1. For example, if n = 1 then ~A1 = [X1/2]w1k11w1k12 ...k1jw1[Y1/2]
and X1 is the number of 0 symbols produced from the sequence of 0 symbols preceding the first 1 read
in w1 from which T produces the leftmost w1 in ~A1 and Y1 is the number of 0 symbols produced from
the sequence of 0 symbols that follows the last 1 read in w1 from which T produces the leftmost w1 in
~A1.
Before we begin to give the subcases for Case III we will prove that there is an n such that for any
number i ∈ N the sequences [X1/2n+i][X2/2n+i−1]...[Xn+i/2] and [Yn+i/2]...[Y2/2n+i−1][Y1/2n+i]
in ~An+i are bounded. It is this property that largely determines the ultimate behavior for any tag system
T with µ = v = 2, w0 = 0 for some initial word A0. This property is proven through Lemma’s 3 and 4.
Lemma 3 proves that one can determine values Xmax, Ymax, Xmin, Ymin such that for every Xi and Yi,
Xi = Xmax or Xi = Xmin and Yi = Ymax or Yi = Ymin. This Lemma is used to prove Lemma 4. This
Lemma proves the above boundedness property.

Lemma 3. Given a 2-tag system T with µ = v = 2, w0 = 0 and #1 > 0, w1 = t11x11x21...1r1, then
one can determine values Xmax, Ymax, Xmin, Ymin for any word ~An:

~An = [X1/2n][X2/2n−1]...[Xn−1/4][Xn/2]w1kn1w1kn2 ...knjw1[Yn/2][Yn−1/4]...[Y2/2n−1][Y1/2n]

produced after n s-rounds on w1 that contains at least one word w1, for every Xi, Yi ∈ ~An, Xi = Xmax

or Xi = Xmin and Yi = Ymax or Yi = Ymin.

Proof:
In order to prove the Lemma we split Case III into three global subcases, determined by the parities of
the sequences of 0 symbols between consecutive 1 symbols in w1, i.e., w1 = r11t1 (#1 = 1), w1 =
r11x11x21x3...x#1−11t1, #1 ≥ 2, with at least one xi even, and w1 = r11ẋ11ẋ21ẋ3...ẋ#1−11t1,#1 ≥
2, with every ẋi odd.

Case a. w1 = r11t1,#1 = 1.
After one s-round on w1 T either produces the word ~A1 = [X1/2]w1[Y1/2], with X1 = r1, Y1 = t1
or a sequence of 0 symbols. After one s-round of T on ~A1 T again produces either a sequence of
0 symbols or the word ~A2 = [X1/4][X2/2]w1[Y2/2][Y1/4], X2 = r1, Y2 = t1. It easily follows
from this that after n s-rounds of T on w1 T produces either a sequence of 0 symbols or a word
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~An = [X1/2n][X2/2n−1]...[Xn−1/4][Xn/2]w1[Yn/2][Yn−1/4]...[Y2/2n−1][Y1/2n] since any word ~An
contains only one word w1. It follows that for any such word ~An that contains at least one word w1 it
must be the case that each Xi = r1, Yi = t1 and thus we have that each Xi = Xmax = Xmin = r1 and
Yi = Ymax = Ymin = t1.

Case b. w1 = r11x11x21x3...xp11t1, (#1 ≥ 2), with at least one xi even.
Note that for any tag system T for which w1 that contains at least two 1 symbols separated by an even
number of 0 symbols, T always reads at least one 1 in w1 during one s-round on w1. Let:

~An = [X1/2n][X2/2n−1]...[Xn−1/4][Xn/2]w1kn1w1kn2 ...knjw1[Yn/2][Yn−1/4]...[Y2/2n−1][Y1/2n]

be some word produced after n s-rounds on w1 and let:

~Ai = [X1/2i][X2/2i−1]...[Xi−1/4][Xi/2]w1ki1w1ki2 ...kijw1[Yn/2][Yi−1/4]...[Y2/2i−1][Y1/2i]

be any of the words from which ~An is produced after n− i s-rounds on ~Ai with ~A0 = w1. It then easily
follows that for eachXi in ~An eitherXi = t1 (when the first 1 read in ~Ai from which T produces the left-
mostw1 in ~Ai+1 is the leftmost 1 of the leftmost wordw1 in ~Ai) orXi = t1+ẋ1+ẋ2+...+ẍj+j with ẍj
the first sequence of 0 symbols in w1 that has even length (when the first 1 read in ~Ai from which T pro-
duces the leftmostw1 in ~Ai+1 is not the leftmost 1 in the leftmost wordw1 in ~Ai). Similarly, for each Yi in
~An, either Yi = t1 or Yi = ẍj′+ẋj′+1+....+ẋ#1−1+r1+#1−j′ where j′ is the index of the last sequence
of 0 symbols inw1 that has even length. We then have thatXmax = t1+ẋ1+ẋ2+...+ẍj+j,Xmin = r1
and Ymin = t1, Ymax = ẍj′+ ẋj′+1 + ....+ ẋ#1−1 + r1 + #1− j′ and for any Xi, Yi in ~An, Xi = Xmax

or Xi = Xmin and Yi = Ymax or Yi = Ymin.

Case c. w1 = r11ẋ11ẋ21ẋ3...ẋp11t1, (#1 ≥ 2), with every ẋi odd.
Since all 1 symbols inw1 are separated by an odd number of 0 symbols, T will either produce a sequence
of 0 symbols or the following word after one s-round of T on w1:

~A1 = [X1/2]w1[ẋ1/2]w1[ẋ2/2]w1...w1[ẋ#1−1/2]w1[Y1/2]

with X1 = r1, Y1 = t1.
Now, if there is at least one j such that t1 + [ẋj/2] + r1 is even, where t1 + [ẋj/2] + r1 gives the total
number of 0 symbols separating the rightmost 1 symbol in a word w1 from the leftmost 1 symbol in
the next word w1 in w1[ẋ1/2]w1, then the case reduces to case b since then there is always at least one
w1 for which the total number of 1 symbols in w1 will be read by T . It then immediately follows that
Xmin = r1, Xmax = jlw1 + [ẋ1/2] + [ẋ2/2] + ... + [ẋj/2] + r1, Ymin = t1, Ymax = r1 + [ẋj′/2] +
[ ˙xj′+1/2] + ...+ [ẋ#1−1/2] + (#1− j′)lw1 with t1 + [ẋj/2] + r1 and t1 + [ẋj′/2] + t1 respectively the
leftmost and rightmost sequence of 0 symbols in ~A1 that is even. For any word ~An produced after n s-
rounds on w1 and any Xi and Yi in ~An produced after n−1 s-rounds on ~A1, Xi = Xmax or Xi = Xmin

and Yi = Ymax or Yi = Ymin.
If there is no such j then T produces either a sequence of 0 symbols or the following word:

~A2 = [X1/4] ~A1[ẋ1/4] ~A1[ẋ2/4] ~A1... ~A1[ẋ#1−1/4] ~A1[Y1/4]

after one s-round on ~A1. Again, if there is at least one j such that t1 + [Y1/2] + [ẋj/4] + [X1/2] + r1 is
even the case reduces to case b, and we can again determine Xmax, Xmin, Ymax and Ymin.
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If there is no such j then T will again produce a sequence of 0 symbols or a word ~A3 after one s-round
on ~A2,...
Generally speaking, for any T from this class, there are two possibilities. The first is that there is an n
such that the word:

~An = [X1/2n] ~An−1[ẋ1/2n] ~An−1[ẋ2/2n] ~An−1... ~An−1[ẋ#1−1/2n] ~An−1[Y1/2n]

contains at least one sequence of 0 symbols t1 +[Yn−1/2]+[Yn−2/4]+ ...[Y1/2n]+[ẋj/2n]+[X1/2n]+
...+[Xn−2/4]+[Xn−1/2]+r1 that is even. The second possibility is that there exists no such n. If there
exists such an n, then the case reduces to case b and Xmax, Xmin, Ymax and Ymin can be determined.
If there exists no such n then it immediately follows that for any ~An, Xmax = Xmin = r1, Ymax =
Ymin = t1. ut

Lemma 4. Given a 2-tag system with µ = v = 2, w0 = 0 and #1 > 0, w1 = t11x11x21...1r1, then it
is possible to determine values n,MaxX,MaxY ∈ N such that for any word ~An+i, i ∈ N:

~An+i = [X1/2n+i]...[Xn+i−1/4][Xn+i/2]w1kn+i1w1...kn+ijw1[Yn+i/2][Yn+i−1/4]...[Y1/2n+i]

produced after n s-rounds on w1 that contains at least one word w1 we have that

[X1/2n+i]...[Xn+i−1/4][Xn+i/2] ≤MaxX

[Yn+i/2][Yn+i−1/4]...[Y1/2n+i] ≤MaxY

Proof:
We will only prove that any sequence of 0 symbols [X1/2n+i]...[Xn+i−1/4][Xn+i/2] will become
bounded by some constant MaxX after a certain number n of s-rounds of T on w1. The proof for
the right-hand side is symmetrical to this case.3

Let T be a 2-tag system with µ = v = 2, w0 = 0 and #1 > 0, then for any word ~Am produced after m
s-rounds on w1 that contains at least one word w1:

~Am = [X1/2m][X2/2m−1]...[Xm/2]w1km1w1km2 ...kmjw1[Ym/2]...[Y2/2m−1][Y1/2m]

It follows from Lemma 3 that for each Xi and Yi in ~Am, Xi ≤ Xmax, Yi ≤ Ymax. Note also that
any [Xi/2m−i+1] is in fact bXi/2m−i+1c or dXi/2m−i+1e. In the first case, [Xi+1/2m−i+2] is in fact
dXi+1/2m−i+2e, in the second, [Xi+1/2m−i+2] is in fact bXi+1/2m−i+2c. The reason for this is that if
one sequence of 0 symbols [Xi/2m−i+1] is entered with shift 0 and [Xi/2m−i+1] is odd, then the next
sequence of 0 symbols will be entered with shift 1, and vice versa.
We can now determine values MaxX and MaxY and n. Let us assume the worst case such that eachXi

and Yi in ~Am has the maximum value Xmax and Ymax, respectively. Evidently, there must be an n such
that either dXmax/2ne = 1, bXmax/2n−1c = 0 or bXmax/2nc = 0, dXmax/2n−1e = 1. Now, given the
word:

~An = [Xmax/2n][Xmax/2n−1]...[Xmax/2]w1kn1w1kn2 ...knjw1[Ymax/2]...[Ymax/2n]

3I am indebted to an anonymous referee for pointing out a serious error in a previous version of this proof.
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Then, after one more s-round on ~An T produces:

~An+1 = [Xmax/2n+1][Xmax/2n][Xmax/2n−1]...[Xmax/2]w1kn+11 ...kn+1jw1[Ymax/2]...[Ymax/2n+1]

Now, if [Xmax/2n] = 0 in ~An then [Xmax/2n+1] = 0 in ~An+1. If [Xmax/2n] = 1, [Xmax/2n−1] = 0 in
~An, then [Xmax/2n] = 0 in ~An+1 and [Xmax/2n+1] = [Xmax/2n]. It thus immediately follows that:

~An+1 = [Xmax/2n][Xmax/2n−1]...[Xmax/2]w1kn+11 ...kn+1jw1[Ymax/2]...[Ymax/2n+1]

and thus that for any word ~An+i the sequence of 0 symbols [X1/2n+i][X2/2n+i−1]...[Xn+i−1/4][Xn+i/2], Xi =
Xmin or Xi = Xmax is bounded either by:

bXmax/2ncdXmax/2n−1e...[Xmax/2]
If bXmax/2ncdXmax/2n−1e...[Xmax/2] > dXmax/2nebXmax/2n−1c...[Xmax/2]

or by
dXmax/2nebXmax/2n−1c...[Xmax/2]

If dXmax/2nebXmax/2n−1c...[Xmax/2] > bXmax/2ncdXmax/2n−1e...[Xmax/2]

ut

Case III.A. #1 = 0 (w0 = 0).
It is trivial to prove that any tag system T from this class will always halt on any initial word A0. First
of all, after one round of T on A0 T produces the word Q1 = 0n, n ∈ N. Secondly, T always halts on
any sequence of 0 symbols because at each computation step for every 0 appended 2 are deleted.

Case III.B. #1 = 1, (w0 = 0).
Any tag systems T with w1 = r11t1 covered by this case will either halt or become periodic on any
initial word A0 because the table method halts for T . Note that this is case a of the proof of Lemma 3
and thus we have that after n s-rounds of T on w1 T produces either a sequence of 0 symbols or a word:

~An = [r1/2i][r1/2i−1]...[r1/2]w1[t1/2]...[t1/2n−1][t1/2n]

since w1 contains only one symbol 1. Now, it follows from Lemma 4 that we can determine an n such
that for any word ~An+i produced after n+ i s-rounds on w1 the sequence of 0 symbols to the left-hand
of the leftmost and right-hand side of the rightmost 1 in w1 in ~An+i is bounded by come constant. This
implies that there is thus but a finite number of different words ~Ai that can be produced with the table
method and thus the table method halts for T .

Case III.C. #1 = 2, (w0 = 0).
We split the case into two subcases, determined by the parity of the number of 0 symbols between the
two 1 symbols in w1, i.e., w1 = r11ẍ11t1 or w1 = r11ẋ11t1.

Case III.C.1. w1 = r11ẍ11t1 (w0 = 0, #1 = 2).
Note that after one s-round of T on w1, T always produces one w1, surrounded by a finite number of 0
symbols and thus this case is similar to Case III.B. I.e., only a finite number of words can be produced
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by the table method when applied to w1 and it thus follows that T always halts or becomes periodic on
any initial word A0.

Case III.C.2. w1 = r11ẋ11t1 (w0 = 0, #1 = 2)
For any tag system T covered by this case, either T only reads 0 symbols or two 1 symbols during an
s-round on w1. Thus, after one s-round on w1 T either produces a sequence of 0 symbols, ultimately
leading to the production of ε, or the following word:

~A1 = [r1/2]w1 [ẋ1/2]w1[t1/2]

The parity of the length of t1 [ẋ1/2] r1 plays a significant role in the ultimate behavior of T . Indeed, if
t1 [ẋ1/2] r1 is odd then both words w1 in ~A1 will be entered with the same shift. If t1 [ẋ1/2] r1 is even
and the first w1 in ~A1 is entered with shift 0 then the second w1 will be entered with shift 1 and vice
versa.
Then, if t1 [ẋ1/2] r1 in ~A1 has even length T produces one of the following words:

k1,1
~A1k1,2

or:
k1,3

~A1k1,4

after one s-round on ~A1, where ki,j indicates some sequence of 0 symbols. It then easily follows that if
t1[ẋ1/2]r1 in ~A1 has even length, then T will either become periodic or halt onA0 due to the boundedness
property on the number of 0 symbols the left and right of any word ~An produced after n− 1 s-rounds on
~A1 (Lemma 4).
If t1 [ẋ1/2] r1 has odd length, T produces:

~A2 = [r1/4] ~A1 [ẋ1/4] ~A1[t1/4]

after one s-round on ~A1 or a sequence of 0 symbols depending on the shift with which ~A1 is entered and
the number of 0 symbols preceding the first 1 in ~A1.
The ultimate behavior of T depends on the parity of the length of t1[t1/2] [ẋ1/4] [r1/2]r1 in ~A2. If
t1[t1/2] [ẋ1/4] [r1/2]r1 has even length, T produces either one of the following words after one s-round
on ~A2:

k2,1
~A2k2,2

or:
k2,3

~A2k2,4

It thus follows that if t1[t1/2] [ẋ1/4] [r1/2]r1 is even that T will always either halt or become periodic
on any initial word A0.
If t1[t1/2][ẋ1/4][r1/2]r1 has odd length, then after one s-round on ~A2 T again either produces a sequence
of 0 symbols or a word ~A3 containing two words ~A2,...
It easily follows that tag systems T from this class will always become periodic or halt on any word A0

if there is an n such that after n s-rounds of T on w1 T produces the word:

~An = [r1/2n] ~An−1 [ẋ1/2n] ~An−1[t1/2n]
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with t1[t1/2]...[t1/2n][(ẋ1 − 1)/2n][r1/2n]...[r1/2] + r1] of even length.
It easily follows from Lemma 4 that we can determine (in a finite number of steps) for any T covered by
this case whether or not there exists such an n. If not, T will either halt or have unbounded growth on
A0 since for any word ~Ai produced after i s-rounds on w1 T either produces a sequence of 0 symbols or
a new word ~Ai+1 containing two words ~Ai. In this last case it can be decided whether or not T will have
unbounded growth. The reason for this is that (1) one can determine an m such that for any word ~Am+i

the length of the sequences of 0 symbols separating consecutive 1 symbols in ~Am+i is bounded (Lemma
4) (2) for any sequence Qj produced after j rounds on A0 the length of the sequences of 0 symbols
separating consecutive words ~Ak is bounded (3) given m one can determine the parity of any word ~Ak.
Then, since any word Qm+j produced after m + j rounds on A0 contains only words ~Am+i, i ∈ N and
sequences of 0 symbols, the result easily follows.

Case III.D. #1 ≥ 3, (w0 = 0).
We split the case into two subcases, determined by the parity of the number of 0 symbols separat-
ing consecutive 1 symbols in w1, i.e., w1 = r11ẋ11ẋ21...1ẋ#1−11t1 with every ẋi odd or w1 =
r11x11x21...x#1−11t1 with at least one xi even. Note that the fundamental difference between these
two cases is the fact that with all 1 symbols in w1 separated by an odd number of 0 symbols either all
1 symbols or no 1 symbols are read during one s-round on w1. If at least two 1 symbols are separated
by an even number of 0 symbols, either at least one 1 or two 1 symbols will be read by T during one
s-round on w1.

Case III.D.1. w1 = r11x11x21...x#1−11t1 (#1 ≥ 3, w0 = 0)
Clearly, for any of these tag systems either at least one 1 or at least two 1 symbols are read during one
s-round on w1. This means that none of these tag systems can halt on an initial word A0 in which T
reads at least one 1.
Now, for any tag system T with #1 > 3, if T reads at least two 1 symbols in w1 whatever shift w1 is
entered with, then T always produces wn1 , n ≥ 2 after one s-round on w1. From this it easily follows
that T always has unbounded growth on any initial word A0 for which T reads at least one 1 during one
round on A0. If no 1 is read in A0 then T will halt on A0.
If T always either reads one 1 or at least two 1 symbols during one s-round on w1, then it follows that
there is either one sequence xi of 0 symbols in w1 that is even or there are two consecutive sequences
xi, xi+1 that are even. If there is only one xi that is even then either i = 1 or i = #1 − 1. Otherwise,
if we have a pair of (xi, xi+1) that are even then i ∈ {1, ...,#1 − 1}. For the sake of simplicity we
assume that there is only one sequence of 0 symbols xi that is even and that i = #1 − 1, thus w1 =
r11ẋ11ẋ2...1ẍ#1−11r1. The other cases easily reduce to this case. After one s-round on w1 T produces
either one of the following words:

~A1 = [r1/2]w1[ẋ1/2]w1[ẋ2/2]w1...[ẋ#1−2/2]w1[ẍ#1−1/2][t1/2]

~B1 = k1,1w1k1,2

Note that there are #1 − 1 words w1 in ~A1. The word ~B1 reduces to w1 since the sequence of 0
symbols k1,1 and k1,2 will become bounded after a finite number of s-rounds (Lemma 4). This allows
for periodicity.
The parity of the length of each of the sequences t1[ẋi/2]rt in ~A1 is a determining feature in the ultimate
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behavior of T . Indeed, if there is at least one i such that the sequence of 0 symbols t1[ẋi/2]rt in ~A1 is
odd and the word w1 preceding it is entered with shift 0, the word w1 following it will be entered with
shift 1 and conversely. If there is no such sequence then all words w1 will be entered with the same shift.
Now, if there is an i such that the sequences of 0 symbols t1[ẋi/2]rt in ~A1 has odd length then it follows
that T always has unbounded growth on any initial word that produces a word that contains at least one
word ~A1. The reason for this is that the two possible words ~C2 and ~D2 that can then be produced after
one s-round on ~A1 again contain at least one word ~A1 and one word ~B1. Indeed, the fact that there
is at least one sequence of 0 symbols t1[ẋi/2]rt in ~A1 that has odd length implies that if the word w1

preceding [ẋi/2] results in ~A1 then the word w1 following it will result in ~B1 and vice versa. We then
have that words ~C2 and ~D2 again result in the production of at least one word ~C2 or ~D2 (from ~A1 in ~C2

and ~D2) and at least one word w1 (from ~B1 in ~C2 and ~D2). Thus, once either ~C2 or ~D2 are produced the
word produced with each successive s-round on ~C2 or ~D2 always contains at least one word ~C2 or ~D2

and at least one additional w1 as compared to the word from the previous s-round. This gives unbounded
growth.
If there is no sequence of 0 symbols t1[ẋi/2]rt in ~A1 that has odd length, then T produces either one of
the following words after one s-round on ~A1:

~A2 = [r1/4] ~A1[ẋ1/4] ~A1[ẋ2/4] . . . ~A1[ẋ#1−2/4] ~A1[ẍ#1−1/4][t1/4]

~B2 = [r1/4] ~B1[ẋ1/4] ~B1[ẋ2/4] . . . ~B1[ẋ#1−2/4] ~B1[ẍ#1−1/4][t1/4]

Again, if ~A2 contains at least one sequence of 0 symbols t1[ẍ#1−1/2][t1/2][ẋi/4][r1/2]r1, 0 ≤ i ≤
#1 − 1 that has odd length then it easily follows that T always has unbounded growth on any word A0

that results in the production of a word that contains ~A2 at least once. The reason is that the two possible
words ~C3 and ~D3 that can be produced after one s-round on ~A2 each contain at least one word ~A2 and
one word ~B2. Thus, the word produced with each new s-round on one of the words ~C3 or ~D3 must
again contain at least one word ~C3 or ~D3 and at least one additional word ~B2. This results in unbounded
growth.
Similarly, if there is at least one sequence of 0 symbols t1k1,2[ẋi/4]k1,1r1 in ~B2 with odd length, then T
always has unbounded growth on any word A0 that results in the production of a word that contains ~A1

at least once for similar reasons. Note that ~B2 is similar to ~A1. I.e., ~B2 also contains #1− 1 words w1.
This allows for periodicity in the same way as the production of ~B1 does. The only difference between
~A1 and ~B2 is the number of 0 symbols separating consecutive words w1 in ~B2. In this sense the possible
productions from this word reduce to that of the word ~A1 and we will thus not consider these productions
here.
In general we have two possibilities. In the first possibility there is an n such that one of the words ~An
or ~Bn given below exists. In the second possibility there exist no such words ~An or ~Bn. The word ~An
has the following form:

~An = [r1/2n] ~An−1[ẋ1/2n] ~An−1[ẋ2/2n] ~An−1[ẋ#1−2/2n] ~An−1[ẍ#1−1/2n][t1/2n]

where An contains the following odd length subword consisting entirely of 0 symbols:

t1[ẍ#1−1/2][t1/2]...[ẍ#1−1/2n−1][t1/2n−1][ẋi/2n][r1/2n−1]...r1/2r1, 0 ≤ i ≤ #1− 1

Bn has the following form:

~Bn = [r1/2n] ~Bn−1[ẋ1/2n] ~Bn−1[ẋ2/2n] ~Bn−1[ẋ#1−2/2n] ~Bn−1[ẍ#1−1/2n][t1/2n]
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where ~Bn contains the following subword consisting entirely of 0 symbols of odd length:

t1k1,2[ẍ#1−1/4][t1/4]...[ẍ#1−1/2n−1][t1/2n−1][ẋi/2n][r1/2n−1]...[r1/4]k1,1r1

It easily follows from Lemma 4 that one can decide in a finite number of steps whether or not there exists
such an n. Now, if there is such an n then T has unbounded growth on any word A0 that results in
the production of a word that contains ~An or ~Bn at least once, else T halts or becomes periodic on A0.
Clearly, it can be decided in a finite number of rounds j whether or not T will produce a word Qj that
contains ~An or ~Bn. The reason for this is that it follows from Lemma 4 that there is an m ∈ N such that
for any word ~Am+i and ~Bm+i, i ∈ N the length of any sequence of 0 symbols between two consecutive
1 symbols is bounded by some constant and it must be the case that n ≤ m. One thus only has to wait at
most m+ 1 rounds on A0 to see whether or not T will produce these words.
If there is no such n then we again have that T will either halt, become periodic or have unbounded
growth on A0. Also here it can be decided in a finite number of rounds of T on A0 whether or not T will
have unbounded growth on A0 for similar reasons.

Case III.D.2. w1 = r11ẋ11ẋ21...1ẋ#1−11t1 (#1 ≥ 3, w0 = 0)
For any tag system T covered by this case, all 1 symbols in w1 are separated by an odd number of 0
symbols. As a consequence, either zero or #1 1 symbols are read during one s-round on w1. After one
s-round on w1 T thus produces either a sequence of 0 symbols which ultimately results in the production
of ε or the word:

~A1 = [r1/2]w1[ẋ1/2]w1[ẋ2/2]w1...[ẋ#1−1/2]w1[t1/2]

Note that the word ~A1 contains #1 words w1.
Now, if there is at least one sequence of 0 symbols t1[ẋi/2]r1 that has even length then the case reduces
to the previous Case III.D.1. I.e., for tag systems covered by Case III.D.1., either at least one word w1

or at least two words w1 are produced after one s-round on w1. Similarly, for any tag system T if the
word ~A1 produced after one s-round on w1 contains at least one sequence of 0 symbols t1[ẋi/2]r1 that
is even, either at least one word ~A1 or at least two words ~A1 are produced after one s-round on ~A1. The
ultimate behavior of T then depends on the evolution of the parity of the number of 0 symbols separating
consecutive words w1 in the words produced from ~A1. Note that for any initial word A0, if after two
rounds of T on A0 T does not produce a word Q2 that contains ~A1 at least once, then Q2 is a sequence
of 0 symbols and thus T will halt on A0. Otherwise, T will either become periodic or have unbounded
growth on A0. If there is no sequence of 0 symbols r1[ẋi/2]t1 of even length in ~A1 T either produces a
sequence of 0 symbols or:

~A2 = [r1/4] ~A1[ẋ1/4] ~A1[ẋ2/4] ~A1...[ẋ#1−1/4] ~A1[t1/4]

Again, if there is at least one sequence of 0 symbols t1[t1/2][ẋi/4][r1/2]r1 of even length then the case
reduces to Case III.D.1. If this occurs and after three rounds of T on A0 T does not produce a word Q3

that contains ~A2 at least once, thenQ3 is a sequence of 0 symbols and thus T will halt onA0. Otherwise,
T will either become periodic or have unbounded growth on A0.
As is clear from these productions either there is or is no n such that after n s-rounds of T on A0 T
produces the word:

~An = [r1/2n] ~An−1[ẋ1/2n] ~An−1[ẋ2/2n] ~An−1...[ẋ#1−1/2n] ~An−1[t1/2n]
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and ~An contains at least one sequence of 0 symbols t1[t1/2]...[t1/2n−1][ẋi/2n][r1/2n−1]...[r1/2]r1 that
has even length. Note that T either always produces a word ~Aj or a sequence of 0 symbols after j s-
rounds on w1, with j ≤ n if there is such an n and j ∈ N if there is no such n.
Clearly, if there is such an n then the case reduces to Case III.D.1. It then follows that given some initial
word A0, if after n + 1 rounds of T on A0 T does not produce a word Qn+1 that contains ~An at least
once, then Qn+1 is a sequence of 0 symbols and thus T will halt on A0. Otherwise, T will either become
periodic or have unbounded growth on A0. If there is no such n then the behavior of T reduces to those
subcases of Case III.C.2 for which there is no n such that the rightmost and leftmost 1 in the words ~An−1

in ~An are separated by an even number of 0 symbols. I.e., T will either halt or have unbounded growth
on any initial word A0 and this can be decided in a finite number of steps.

Given the proofs of Cases I–III Theorem 1 follows

�

3. Discussion

It might be very hard, if not impossible, to prove the solvability of those classes of tag systems that are
closest to TS(2, 2), i.e., TS(2,3) and TS(3,2). The class TS(2,3) contains the example provided by Post,
which is known for its complexity. The class TS(3,2) contains a tag system that is capable to simulate
the 3n + 1 problem, a number theoretical problem that is still open [10]. As far as our experience goes,
it seems that the methods used in the present proof cannot be used to prove these classes decidable.
For example, consider the application of the table method to Post’s example from Sec. 1.1. Still, the
table method is a very useful and simple tool to study and prove certain properties of tag systems. This
method can also be automated and thus used in computer-based research on tag systems. It also allows us
to reveal the structure of the kind of words that can be produced by a given tag system T . As is clear from
the proof of Theorem 1, the different kinds of structures found for tag systems from the class TS(2,2),
with lmin < v, lmax > v is very simple and predictable. It is exactly this simplicity of the structure of
the words that can be produced by tag systems T from this class that allows us to decide the two decision
problem discussed here.
In recent years there has been a lot of research on non-standard models of computability. One example
comes from the context of Turing machines, where the standard model was generalized by allowing an
infinitely repeated word to the left and right of the input (weak Turing machines) and left or right of the
input (semi-weak Turing machines). This generalization has made it possible to find smaller universal
Turing machines than those known for the standard model (see e.g. [4, 22]). It would be interesting to
extend this research to tag systems. One could, for example, consider (universal) tag systems that cannot
halt, but always have unbounded growth. Let us call such (universal) tag systems weak (universal) tag
systems.4 However, even if one considers such more general models, the simplicity of the structure of
the words that can be produced by any tag system in the class TS(2,2), with lmin < v, lmax > v, seems

4Note that it is impossible to directly apply weak or semi-weak universality as defined for cellular automata and Turing machines
to tag systems, because one always has to tag something at the end of a word, on the basis of what happens at the beginning of
a word. One round on a word A would then take infinite time.
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to exclude the possibility of universal encoding for any of these tag systems.5 In this sense, the proof of
Theorem 1 gives strong support for the following conjecture:

Conjecture 1. The class of tag systems TS(2,2), lmin < v, lmax > v is not (weak) universal.

Given Wang’s theorem (Sec. 1.1) we only had to consider tag systems with lmin < v, lmax > v to prove
Theorem 1 and thus we did not study the more general class, including those cases for which lmin ≥ v.6

A more intensive analysis would be needed to know whether the following statement is true or false:

Statement 1. There exists no unsolvable decision problem for tag systems from the class TS(2,2).

If false, this could imply that there is weak universality in the class TS(2,2).
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