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Formalism.
The Success(es) of a Failure
Liesbeth De Mol
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1 Introduction

I had my first encounter with logic when I was still in high-school. My Dutch
teacher chose to skip certain chapters in the course book including the one
on logic. Fascinated as I was by things not taught in school I had a look at
the chapter. Today I know that at that point I had no clue whatsoever what
logic is. The chapter gave something in the spirit of the following syllogism
as an example, adding that this was a correct derivation:

All elephants are ruby red
Bambi is an elephant

Bambi is ruby red

I simply could not get this: how could this conclusion be correct? As is
evident, the mistake I made was that I was focusing on the meaning of what
is said rather than on the form of the deduction. I did not understand at
that point in time that one can speak about truth in relation to form without
reference to what is true, empirically speaking. Since that first encounter
with logic, I have long disliked, if not opposed, the idea of formalization.

Nowadays I feel no longer appalled by logic-as-formalism, on the con-
trary. My interest however is not so much in the formalization of something
“empirical” like human reasoning but in the form as form, form without
content. This paper is an account of why “form” matters (to me) and why
the quest for “meaningfulness” sometimes obscures and even slows down
certain developments or ideas.

In the introduction to Proofs and refutations [Lakatos, 1976], an influen-
tial book in the philosophy of mathematics and science in general, Lakatos
clarifies the motivation behind his book: to criticize and ultimately reject
formalism as the “latest link in the long chain of dogmatist philosophies

1This research was supported by the Fund for Scientific Research, Flanders, Belgium
and CNRS, UMR 8163 Savoirs, Textes, Langage, Université de Lille 3, France.
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of mathematics” [Lakatos, 1976, p. 4]. By identifying formalism as the
“bulwark” of logical positivism, he concludes that formalism somehow ex-
cludes the informal aspects of mathematics and that it denies mathematics
its history. In this paper I will apply a Lakatos-inspired method on formal-
ism itself viz. study formalism-as and embedded in-a-practice of (informal)
mathematics. By doing so, I will argue that formalism as practiced is far
removed from the kind of picture one gets from formalism upon reading
Lakatos and that his view on formalism should at least be nuanced if one
turns to actual formalism in action.

By way of a historically-inspired study of the work of a well-known math-
ematical logician, Emil Leon Post, I will make a stand for the concreteness,
historicity and practicability of “form.” It is shown that at least in the
case of Post the formalist approach was a necessary prerequisite to unveil
its fundamental limitations. Ultimately, this paper aims at showing how
Post’s formalism is relevant even today. By putting it into the perspective
of computer science, it is suggested that it offers an interesting philosophical
and practical alternative to the “art of simulation” as a means to explore
the limits and possibilities of computation.

2 In search of the ultimate form

2.1 Lewis’ influence on Post’s early work

Perhaps one of the most extreme formalist convictions can be found in
Chapter 6 Symbolic Logic, Logistic and mathematical method of Lewis’ Sur-
vey of Symbolic Logic, a chapter that was removed from the later editions
of [Lewis, 1918, pp. 355-56]:

A mathematical system is any set of strings of recognizable
marks in which some of the strings are taken initially and the
remainder derived from these operations performed according
to rules which are independent of any meaning assigned to the
marks. [The] distinctive feature of this definiton lies in the fact
that it regards mathematics as dealing, not with certain denoted
things – numbers, triangles, etc. – nor with certain symbolized
“concepts” or “meanings”, but solely with recognizable marks,
and dealing with them in such wise that it is wholly indepen-
dent of any question as to what the marks represent. This might
be called the “external view of mathematics” or “mathematics
without meaning.” [W]hatever the mathematician has in his
mind when he develops a system, what he does is to set down
certain marks and proceed to manipulate them [...]
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With this lengthy quote, the stage is set for “pure” form, viz. form without
meaning. As is clear, for Lewis, such form is in fact the ideal of mathematics
as an activity.1 Going a step further, if mathematics is the foundation of
all of science then “Logistik is the universal method for presenting exact sci-
ence in ideographic symbols. It is the “universal mathematics” of Leibniz”
[Lewis, 1918, p. 372].

Imagine the impression this must have left on the young mathematician
Emil Post. It is important to keep in mind that at that point in time, mathe-
matical logic as a discipline hardly existed in the United States [Davis, 1995].
In fact, Emil Post would become one of the few U.S. mathematical logicians
who, besides Alonzo Church, made fundamental contributions to the field
in the 20s. Lewis’ book was one of the few available English textbooks in
circulation at that time, so it is not surprising that Post studied it.

In the same year as Lewis’ book was published, Post was a postgraduate
student at Columbia University. It was during that time that he was famil-
iarized with the formal austerity of Principia Mathematica by Russel and
Whitehead [Russell and Whitehead, 1913] through the teachings of Cassius
J. Keyser. Together with Lewis’ [Lewis, 1918] this would become the main
influence on Post’s Ph.D. Introduction to a General Theory of Elementary
Propositions [Post, 1921].2 Post however was not fully satisfied with the
formal apparatus of Principia because [Post, 1921, pp.163–164]:

[...] owing to the particular purpose the authors had in view they
decided not to burden their work with more than was absolutely
necessary for its achievements, and so gave up the generality of
outlook which characterized symbolic logic. [W]e might take
cognizance of the fact that the system of ‘Principia’ is but one
particular development of the theory [and] so [one] might con-
struct a general theory of such developments.

Hence, instead of working with Principia Post decided to develop his own
formal apparatus, one, as Post would later write, that “eschews all inter-
pretation” [Post, 1965].

1In the long footnote 17, p. 360, Lewis explains that this does not exclude creativ-
ity. The mathematician as the “manipulator” of the marks needs to be intelligent and
ingenious for the derivation of required, interesting or valuable results. Lewis makes the
analogy here with Gulliver “who found the people of Brobdingnag (?) feeding letters
into a machine and waiting for it to turn out a masterpiece. Well, masterpieces are
combinations achieved by placing letters in a certain order! However mechanical the
single operation, it will take a mathematician to produce masterpieces of mathematics.”
(It is not in Brobdingnag but in the Academy of Lagado – where useless projects are
undertaken – that Gulliver saw the machine for producing sentences and books.)

2See [Davis, 1994, De Mol, 2006, Urquhart, 2008].
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2.2 The method of combinatory iteration

But why exactly did Post regard Principia as being too particular and why
did he develop his own formal apparatus? The motivation behind this is
what one could call (a kind of) methodological formalism: the development
of the most general form of symbolic logic and ultimately mathematics as
“instruments of generalization” which make possible a study of the general
properties of the whole of mathematics. Post’s idea was that if one wants to
study the general properties of logic and mathematics then one needs not
one particular system of symbolic logic or mathematics, but a general form
that comprises all such possible systems. In this sense, Post’s formalism can
be regarded as a method to study (the foundations of) mathematics.

In an unpublished note from the Emil Post Papers held at the American
Philosophical Society titled Note on a Fundamental Problem in Postulate
Theory and dated June 4, 1921 Post makes explicit that formalism can
be used “to obtain theorems about all [possible] assertions” of mathematics
but that such a “complete specification of the logic that is employed [in a
mathematical system] is not made in the usual mathematical developments,
and indeed is not necessary.” In other words, Post did not aim nor expect
to effectively replace the usual style of mathematics by formal logic; it was
not his ambition to cleanse or cure mathematics from non-rigorousness or
to get rid of its informality.

Even though Post’s formalism can be called methodological, it is rooted
in the belief that, ultimately, mathematics can be captured by form. This
indeed does not necessarily mean that he expected that real-life mathe-
matics would be replaced by formal proofs. What he did expect was that
mathematics can be captured by (a) general form and that (b) by study-
ing (particular instances of that) form it would become possible to prove
theorems that say something about the whole of mathematics, about math-
ematics in general. An example of such a problem, which would in fact
become his main focus in the period 1920-21 when he was a Procter fel-
low in Princeton, was what Post called the finiteness problem for first-order
logic, viz. the famous Entscheidungsproblem proven undecidable by Church
and Turing in 1936.

In its concrete realization, Post’s formalism is completely in the spirit
of Lewis’ formalist philosophy. Indeed, in the same unpublished note just
mentioned, Post identifies this “method” as the method of combinatory
iteration and describes it as follows:

[T]he method of combinatory iteration completely neglects [...]
meaning, and considers the entire system purely from the sym-
bolic standpoint as one in which both the enunciations and as-
sertions are groups of symbols or symbol-complexes [....] and
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where these symbol assertions are obtained by starting with cer-
tain initial assertions and repeatedly applying certain rules for
obtaining new symbol-assertions from old.

How far this method of combinatory iteration would lead Post becomes clear
if one connects Post’s Ph.D. to his research during the period 1920-21 when
he was a Procter fellow.

In his Ph.D. Post made a start with his method of generalization: he in-
troduced the truth-table method for propositional logic (isolated from Prin-
cipia) and proved that this logic is complete and consistent with respect to
this method. He also emphasized that the truth table method provides a
method that allows to decide the decision problem for the propositional
calculus and generalized the two-valued truth table method to an arbitrary
finite number of truth values hence laying the foundations for multi-valued
logic. He also introduced a form intended as a general framework to reason
about all systems of symbolic logic and, ultimately, mathematics. He re-
ferred to this form as generalization by postulation [Post, 1921, p. 176] and
later called it the canonical form A [Post, 1943, Post, 1965]. It is a form
that captures an infinite number of formal systems understood as finitary
symbol manipulation systems. It resulted from a generalization of Post’s
formulation of propositional logic based on that from Principia Mathemat-
ica. Table 1 compares Post’s formulation of propositional logic, using only
the two logical functions ∼,∨ with the canonical form A.3,4

Table 1: Comparison between Post’s formulation of propositional logic and his
canonical form A.

Propositional Logic Canonical form A

I. If p is an elementary proposition
then so is ∼ p

If p1, . . . , pm1
are elemen-

tary propositions then so is
f1(p1, . . . , pm1

)
...

If p and q are elementary propo-
sitions then so is p ∨ q

If p1, . . . , pmµ
are elemen-

tary propositions then so is
fµ(p1, . . . , pmµ

)

Continued on next page

3Note that I have not used the dots as brackets notation of Principia.
4Note that the description of propositional calculus in Principia is almost identical.

However, it uses the three logical functions ∼,∨,⊃. Remember that p ⊃ q can be defined
as ∼ p ∨ q in propositional logic (See [Russell and Whitehead, 1913, p. 12]).
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Table 1 – continued from previous page
Propositional Logic Canonical form A

II. The assertion of a function in-
volving a variable p produces the
assertion of any function found
from the given one by substitut-
ing for p any other variable q, or
∼ q, or (q ∨ r)5

The assertion of a function in-
volving a variable p produces the
assertion of any function found
from the given one by substi-
tuting for p any other variable
qi, or f1(q1, . . . , qm1

), . . ., or
fµ(q1, . . . , qmµ

)
III. ⊢ P ⊢ g11(P1, ..., Pk1

) . . . ⊢

gk1
(P1, ..., Pkk

)

⊢∼ P ∨Q
...

⊢ g1k1
(P1, ..., Pk1

) . . . ⊢

gkkk
(P1, ..., Pkk

)
produce produce produce
⊢ Q ⊢ g1(P1, ..., Pk1

) . . . ⊢

gk(P1, ..., Pkk
)

IV. Postulates: Postulates:
⊢∼ (p ∨ p) ∨ p ⊢ h1(p1, p2, . . . , pl1)
⊢∼ (p ∨ (q ∨ r)) ∨ (q ∨ (p ∨ r)) ⊢ h2(p1, p2, . . . , pl2)
⊢∼ q ∨ (p ∨ q) . . .
⊢∼ (∼ q∨r)∨(∼ (p∨q)∨(p∨r)) . . .
⊢∼ (p ∨ q) ∨ (q ∨ p) ⊢ hλ(p1, p2, . . . , plλ)

As is clear from Table 1 what Post did was to extract some of the essential
formal features of the postulational formulation of propositional logic and
generalize them. Instead of the two logical functions ∨,∼, a system in form
A can have an arbitrary but finite number of functions; instead of having
one production rule it can have an arbitrary number of production rules and
instead of five postulates it can have an arbitrary but finite number of them.
Post’s formulation of propositional logic clearly fits canonical form A: it is
just one of an infinite number of symbol manipulation systems that can be
expressed in form A. The result is that Post now has a means to study not
one but an infinite number of formal devices and hence study properties of
mathematical systems as symbol manipulation systems in general.

Shortly after finishing his Ph.D., Post became a Procter fellow in Prince-
ton: it was during that time that Post developed and studied several other
forms, originally with the aim of proving that there is a general method to
decide for any formula in first-order logic and ultimately Principia whether

5This corresponds to substitution.
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or not it is derivable in that system, i.e., to prove the decidability of the
finiteness problem for first-order logic, and, ultimately, for the whole of
Principia. This was a very ambitious project. Indeed: “Since Principia
was intended to formalize all of existing mathematics Post was proposing no
less than to find a single algorithm for all of mathematics” [Davis, 1994].
Following the method of his Ph.D., his approach was to generalize and
study meaningless form. In the introduction to Account of an anticipa-
tion. Absolutely unsolvable problems and relatively undecidable propositions
[Davis, 1965], a manuscript which gives detailed descriptions on Post’s re-
search during 1920-21 and which was posthumously published in 1965 by
Martin Davis,6 Post explains the significance of this approach [Post, 1965,
pp. 341–342]:

Perhaps the chief difference in method between the present de-
velopment and its more complete successors is its preoccupation
with the outward forms of symbolic expressions, and possible
operations thereon, rather than with logical concepts as clothed
in, or reflected by, correspondingly particularized symbolic ex-
pressions, and operations thereon. [This] allows greater freedom
of method and technique.

Instead of starting from the logic of Principia, Post decided to concentrate
on his canonical form A, convinced that if one can work with a generalized
form, stripped of meaning, it might be more easy or straightforward to
prove the decidability of decision problems. Post knew that if he was able
to prove the decidability of the finiteness problem for systems in canonical
form A and if he would also be able to prove that first-order logic reduces
to a system in canonical form A he would have succeded in his ambitious
goal of proving that any mathematical problem can be decided in a finite
number of steps. Post was indeed able to prove that first-order logic as
described in Principia can be reduced to a system in canonical form A

(by way of a second form, canonical form B).7 All that remained to be
done now was to demonstrate the decidability of the finiteness problem
for systems in canonical form A. Post’s approach here was to start from
the simplest (classes of) cases, by studying systems in “which the primitive
functions are all functions of one variable, the resulting relative simplicity
of the systems allowing a direct analysis of the formal processes involved”
[Post, 1965, 346]. However, “considerable further labor produced but minor
dents in the problem for [systems in canonical form A] not so restricted.”

6This manuscript was offered for publication to American Journal for Mathematics
but rejected by Hermann Weyl. A significantly abbreviated version of it was finally
published as Post’s influential [Post, 1943].

7See pp. 350–361 of [Post, 1965] for the details of the proof.
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2.3 The frustrating problem of “tag”

So what to do next? Here things become a bit unclear, but it is known
from [Post, 1943, Post, 1965] that the next important step forward in the
method of combinatory iteration are Post’s tag systems [De Mol, 2006].

Definition 1. (v-tag system) A tag system T consists of a finite alphabet
Σ of µ symbols, a deletion number v ∈ N and a finite set of µ words
w0, w1, . . . , wµ−1 ∈ Σ∗ called the appendants, where any appendant wi

corresponds to ai ∈ Σ. A v-tag system has a deletion number v.

In a computation step of a tag system T on a word A ∈ Σ∗, T appends
the appendant associated with the leftmost letter of A at the end of A,
and deletes the first v symbols of A. This computational process is iterated
until the tag system produces the empty word ǫ and hence halts. To give an
example, let us consider the one tag system mentioned by Post [Post, 1943,
Post, 1965] with v = 3, 0 → 00, 1 → 1101 [Post, 1943, Post, 1965]. If the
initial word A0 = 110111010000 we get the following productions:

110111010000
⊢ 1110100001101

⊢ 01000011011101
⊢ 0001101110100

⊢ 110111010000

The word A0 is reproduced after 4 computation steps and is an example of
a periodic word.

As explained by Post in his [Post, 1965], he arrived at tag systems when
working on a problem related to but different from the finiteness problem
and is now known as the unification problem [Davis, 1994]. This is the
problem to determine for any two (logical) expressions what substitutions
would make those two expressions identical.Post also found that tag systems
and their decision problems are relevant for the finiteness problem of the
canonical form A. Hence, “[tag systems] appeared as a vital stepping stone
in any further progress to be made” [Post, 1965, p. 361].

If we compare the formal definition of tag systems with that of systems
in canonical form A, it is clear that whereas the canonical form still bears a
clear relation with propositional logic, this is not the case for tag systems.
It was Post’s hope that his study of tag systems would in fact be a step
towards a solution for the finiteness problem for systems in canonical form
A. More specifically, Post hoped to tackle what he called the problem of
“tag” for which he formulated two variants nowadays known as the halting
and reachability problem for tag systems [De Mol, 2010]:



36 Liesbeth De Mol

Definition 2. The halting problem for tag systems is the problem to de-
termine for a given tag system T and any initial word A0 whether or not T
will halt when started from A0.

Definition 3. The reachability problem for tag systems is the problem to
determine for a given tag system T , a fixed initial word A0 and any arbitrary
word A ∈ Σ∗, whether or not T will ever produce A when started from A0.

Post would spend nine months of research on these devices. His approach
was to start from the simplest cases, and, if successful, try to “scale” the re-
sults for the simplest cases to the complete class of tag systems. He was able
to prove that the class of tag systems with v = µ = 2 has a decidable halt-
ing and reachability problem, a proof which “involved considerable labor”.
He considered it as the “major success” of his Procter fellowship.8 How-
ever, for cases that seemed to go but one step beyond the case v = µ = 2,
Post only found “intractable” cases and cases of a “bewildering complexity”
[Post, 1965, 382]. In the end, even though Post initially had been quite
optimistic about the possibility of successfully proving the problem of “tag”
decidable, it was his meeting and interaction with this form that ultimately
led to the reversal of his entire program of proving the finiteness problem
decidable [Post, 1965, p. 363]:

For a while the case v = 2, µ > 2, seemed to be more promising,
since it seemed to offer a greater chance of a finely graded series
of problems. But when this possibility was explored in the early
summer of 1921, it rather led to an overwhelming confusion of
classes of cases, with the solution of the corresponding problem
depending more and more on problems in ordinary number the-
ory. Since it had been our hope that the known difficulties of
number theory would, as it were, be dissolved in the particu-
larities of this more primitive form of mathematics, the solution
of the general problem of “tag” appeared hopeless, and with it
our entire program of the solution of finiteness problems. This
frustration [my emphasis], however, was largely based on the
assumption that “tag” was but a minor, if essential, stepping
stone in this wider program.

Post had clearly underestimated the complexity a simple form such as that
of “tag” can ‘generate’. Instead of being convinced of the existence of an
ultimate method to decide all of mathematics, he now considered the pos-
sibility that this might be a hopeless ambition since already this “primitive
form of mathematics” results in major difficulties.

8And I regard it as one of my own major successes to have reproven this result (See
[De Mol, 2010]). Note that (developing) this proof also involved considerable labor.
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2.4 The actual reversal of Post’s programme

After his frustrating experience with tag systems, Post developed two other
important forms during his Procter fellowship: systems in canonical form
C, which are nowadays known as Post production systems in the context of
formal language theory, and the normal form. I only describe the normal
form here.

Systems in normal form, normal systems for short, are a special class of
systems in canonical form C. A system in normal form has only one initial
word (postulate) and a finite set of production rules all of the following form:

giPi

produces
Pig

′

i

Clearly, normal systems are very similar to tag systems. In fact, the pro-
duction rules of a tag system are easily rewritten in normal form.

Knowing from his experience with tag systems that apparent formal sim-
plicity does not necessarily imply real simplicity, Post started on a project
of proving the “power” of systems in normal form, viz. their generality: he
first proved that canonical form A and B can be reduced to a system in
canonical form C and then, most importantly, proved that the canonical
form C reduces to normal form. This fundamental result was later pub-
lished as [Post, 1943]. From this Post concluded that in fact the whole of
Principia and hence mathematics could perhaps be reduced to the normal
form:

[F]or if the meager formal apparatus of our final normal systems
can wipe out all of the additional vastly greater complexities of
canonical form B, the more complicated machinery of the latter
should clearly be able to handle formulations correspondingly
more complicated than itself.

This insight resulted in the formulation of what Martin Davis has called
Post’s thesis:

Post’s thesis Every generated set of sequences on a given set of letters
a1, a2, ..., aµ is a subset of the set of assertions of a system in normal form
with primitive letters a1, a2, ..., aµ, a

′

1, a
′

2, ..., a
′

ν , i.e., the subset consisting of
those assertions of the normal system involving the letters a1, a2, ..., aµ.
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Post’s thesis identifies the vague notion of generated (set of) sequence(s)
with generated by a normal system. Even though this thesis is quite tech-
nical in nature, it is logically equivalent to Turing’s more famous thesis.

Post soon understood the implications of this thesis. He had already
learned from tag systems that his program of proving the whole of mathe-
matics decidable might in fact be hopeless. He was now able to prove with
the diagonal method that there is no finite method to decide for any normal
system and some word whether or not that word can be generated by that
normal system. Since he was convinced of the generality of normal systems
he concluded that there are absolutely unsolvable problems. Post even went
one fundamental step further and derived, on the basis of these results, that
no logic is complete hence anticipating part of Gödel’s results be it without
formal proofs.

2.5 “I study mathematics as a product of the human mind”

Having established a thesis logically equivalent to Church’s and Turing’s
15 years before the facts, Post understood that even though he was now
convinced of the universality of normal form [Post, 1965, p. 387]:

[for the thesis to obtain its full generality] an analysis should be
made of all the possible ways the human mind can set up finite
processes to generate sequences.

This view is very similar to what Turing would later write in his famous
1936 paper On computable numbers [Turing, 1936] where he states that:

The real question at issue is: “What are the possible processes
which can be carried out in computing a number?”

Although hardly ever acknowledged in the literature, in 1921 Post was quite
aware of the significance of what Turing calls the “real question at issue.”
In fact it can be argued that Post made a start with such an analysis as
early as 1921-22, an analysis which lay at the basis of Post’s note from 1936
[Post, 1936] and contains a formulation which is almost identical to Turing
machines. How else does one explain that both Post and Turing developed
quasi-identical formalisms?9

9The main reason why Turing’s thesis is considered in the literature as superior is
exactly because of this analysis of the processes involved when the mathematician is
computing a number, an analysis which, by eliminating all the non-essential features of
this process, resulted in the well-known Turing machine. Even though I value Turing’s
work very highly, it is my view that several recent historical and philosophical studies on
the topic are too much biased in their high praise for Turing’s work against Church’s and
especially Post’s. I have found no satisfying reason in the literature to regard Turing’s
thesis as being superior to Post’s second thesis (see below). It is not because Post’s
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This 1936 note was submitted by Post to the Journal of Symbolic Logic
after having read Church’s 1936 paper. It contained a thesis which identifies
the vague notion of solvability of a problem with solvability by his formula-
tion 1. Although almost identical to Turing machines there is one important
and philosophical difference between Post’s and Turing’s approaches: Tur-
ing’s analysis is one of the mathematician in the process of computing a
number, for Post it is an analysis of the possible mental processes involved
when generating a set and, later in 1936, when solving a decision problem.
This is reflected in the fact that Turing’s formalism is in terms of idealized
computing machines, whereas Post’s was in terms of sets of instructions in
a formal language (see [Davis, 1994]). The fact that for Post his theses are
related to human mental processes is reemphasized in his note [Post, 1936,
p. 105]:

Its purpose [of formulation 1] is not only to present a system of
a certain logical potency but also, [...] of psychological fidelity

It is exactly for this reason that Post could not agree with Church on the
idea of regarding his thesis (or any other logically equivalent one) as being
but a formal definition of a vague, intuitive concept.10 It is also why for
Post his thesis should be understood as a working hypothesis and, in case
more and more support could be found for it, a natural law. Indeed, for
Post his thesis is about the human mind and its mathematical capabilities,
hence [Post, 1936, p. 103]:

[...] to mask this identification under a definition hides the fact
that a fundamental discovery in the limitations of the mathe-
maticizing power of Homo Sapiens has been made and blinds us
to the need of its continual verification.

This is a very strong philosophical point of view not only with respect to
the thesis but also with respect to mathematics in general. It shows that
even though Post can be considered as a formalist, this does not mean that
he understood mathematics and its formalizations as something that can
be isolated from humans, a point made even more explicit here [Post, 1965,
p. 403]:

I study mathematics as a product of the human mind not as
absolute.

paper does not contain the (philosophical) analysis nor the major results of Turing’s
[Turing, 1936] that the thesis as such would be worth less.

10For instance, in Church’s thesis, effective calculability is defined as λ-definability and
general recursive functions.
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Does the conclusion of a fundamental limitation of the “method of combi-
natory iteration” mean that Post had turned his back to symbolic logic and
“form”? No. On the contrary, the normal form would remain a fundamental
form throughout his work. He even used it as the formal framework in his
founding paper on recursive functions [Post, 1944]. More important here,
given the discovered limitations, it is symbolic logic itself that can be used
as a method to explore and develop these limitations [Post, 1965]:

[...] the creativeness of human mathematics has a counterpart in-
escapable limitation thereof – witness the absolutely unsolvable
(combinatory) problems. Indeed, with the bubble of symbolic
logic as universal logical machine finally burst, a new future
dawns for it as the indispensable means for revealing and devel-
oping those limitations. For [...] Symbolic Logic may be said to
be Mathematics become self-conscious.

In a letter to Church dated March 24, 1936 a similar point is made:11

For if symbolic logic has failed to give wings to mathematicians
this study of symbolic logic opens up a new field concerned with
the fundamental limitations of mathematics, more precisely the
mathematics of Homo Sapiens.

To be clear: this particular view does not imply that Post somehow sup-
ported computationalism, viz., the idea that the mind is like a Turing ma-
chine.12 It only means that there are things we cannot do (at least if we
indeed interpret the thesis as something that relates to human activity) and
that it is symbolic logic than can be used to study the boundaries of these
human limitations.13

3 Re: some high-speed logic. A discussion

The fact that Post emphasized that his thesis (and those that are logically
equivalent to it) is a hypothesis because, if true, it implies a discovery of

11The letters from Post to Church can be found in the Alonzo Church papers, box
20, Folder 14; Department of Rare Books and Special Collections, Princeton University
Library.

12It should be noted here that after his discoveries he became more and more convinced
of the significance of mathematical creativity. On several occasions he pleaded for a
mathematics that is more informal (!) and less axiomatic. In fact in the introduction of
[Post, 1965, p. 343] he even makes a plea for a reversal of the entire axiomatic trend [...]
with a return to meaning and truth.”

13Regretfully this is not often not what the debate on the Church-Turing thesis focuses
on nowadays. If one takes some of the statements by people like Copeland seriously one
gets the impression that they want to deny us these very limitations.
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a fundamental human limitation, is most probably rooted in Post’s explo-
rations of “form” in the period 1920-21 and the reversal of his program
that resulted from it. Indeed, quite unlike Turing who started out from the
idea of formalizing the vague notion of computability, Post formulated his
thesis on the basis of a profound analysis of systems of symbolic logic.14

The insight that something as simple as tag systems cannot be controlled
confronted Post with the limits of finite methods and, since these methods
are human, also with his own limitations. Hence, Post’s formalist approach
ultimately resulted in a view on symbolic logic that seems far removed from
the kind of picture one gets from Lakatos’ reading of formalism. Here is an
excerpt from his [Lakatos, 1976]:

But what can one discover in a formalized theory? [...] First,
one can discover the solution to problems which a suitably pro-
grammed Turing machine could solve in a finite time [...]No
mathematician is interested in following out the dreary mechan-
ical ‘method’ prescribed by such decision procedures. Secondly,
one can discover the solutions to problems (such as: is a certain
formula in a non-decidable theory a theorem or not?), where one
can be guided only by the ‘method’ of unregimented insight and
good fortune. Now this bleak alternative between the rational-
ism of a machine and the irrationalism of blind guessing does
not hold for live mathematics

In the light of Post’s struggle with “form” which resulted in a philosophical
point of view that understands symbolic logic as the means to develop and
explore the limits of mathematics and its formalizations, but also as “math-
ematics become self-conscious”, this black-and-white picture of formalism
vs. informal mathematics should at least be nuanced.15 Furthermore, even
at the time when Post was still a full-blood formalist he did not expect that
real-world mathematics would be replaced by formalism (See Sec. 2.2, p.
31).

If there is one thing one can learn from Post’s formalism, it is that it is
formalism itself and in practice that makes possible the study of its very own

14This aspect of Post’s early work is quite parallel to the way Church arrived at the
first formulation of his thesis in which he identifies calculability with λ-definability. It
was only by studying (properties of) λ-calculus and understanding its power that Church
first came to the idea of defining (in his view) the vague notion of calculability.

15Even though I adopt the philosophical view on mathematics which is historically-
embedded and practice-based – a view which has been influenced by Lakatos’
[Lakatos, 1976], the way formalism is described by Lakatos is very much a-historical
and at best caricatural. The fact that Tarski, Curry, Church et al. are put on the same
line as the logical positivists seems unfair. For instance Curry’s formalism is much more
delicate than the image one gets from Lakatos’ Curry [Curry, 1951].
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limitations. In this sense, Lakatos’ question But what can one discover in
a formalized theory? gets a very different answer from the one provided by
Lakatos. It is Post’s formalist method of simplifying through generalizations
that led to his results and philosophical point of view and it is hard to
imagine that Post would have called this method one of “unregimented
insight and good fortune”, formalist though he was at that time.

Post’s story shows us that it was exactly the Lewisean heterodox view
on mathematics, a mathematics stripped of all meaning, that resulted in
the anticipation of the fundamental results of the 30s by Gödel, Church
and Turing, even though it was not published at the time. Indeed, whereas
[Davis, 1982]:

Hilbert and his school went on to approach the decision problem
for quantification theory semantically, Post evidently felt that
was not a promising direction because the combinatorial intri-
cacies of predicate logic were too great to penetrate into that
manner, and what he proposed instead was to simplify through
generalization.

Some 10-15 years after Post, the formalist school of thought would officially
achieve the height of its (own) failure. The very limitations already dis-
covered by Post in 1921 were now proven in detail and published. Gödel’s
incompleteness results are often seen as the death knell of the Hilbertian
optimism so famously (and ironically) captured in Hilbert’s epitaph “wir
müssen wissen, wir werden wissen”. It showed that no finite axiomatic sys-
tem would ever be able to capture the whole of mathematics. Some five
years later it would be up to Church and Turing to furthermore prove that
no finite (formal) method will ever be found which is able to decide problems
logically equivalent to the Entscheidungsproblem of first-order logic.

Despite the failure of the formalist program in the sense of Hilbert, it is
not the case that formalism was dead and buried after that. In fact, out
of the ashes of the failure some of the foundations would be laid for a new
discipline to be: computer science. Indeed, with the rise of the electronic and
programmable computer it became clear that the formal devices developed
by Church, Post, Turing et al. were in fact very useful. Hence, the results of
that which is often regarded as an abstract and old-fashioned philosophy of
mathematics, attained a new and vigorous life in the context of the machine
that we all use on an everyday basis.

Is this somehow surprising? In a sense it is not. One should not forget
that the computer can in fact be understood as the physical realization of
“calculability” and is hence the physical pendant of the forms developed by
Church, Post and Turing. In this sense, the computer can also be under-
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stood as a machine without meaning, at least to some extent. That the
computer is a machine without meaning, a machine that does not really
understand in the way we are able to understand, is in fact one of the clas-
sical arguments of those who are against the idea of an intelligent machine,
and, quite often, consciously or unconsciously, in favor of a pejorative and
derogatory view of the machine. On the other side of the spectrum there are
those who are trying to understand how the machine can be made (more)
intelligent and/or (more) natural mostly by focusing on simulation.

If we look at what is done with computers nowadays, the least one can say
is that these machines are quite influential in our everyday and professional
lives. Understood as machines without meaning who can only “understand”
form but not meaning, this would mean that it is mechanized “formal logic”
that we all so much depend on. Of course, when we are interacting with
the machine, we are hardly aware of this. This is due to the fact that
it is the explicit purpose of software developers to create an illusion of
meaningfulness made possible by adding many layers on top of the bare
electrical pulses of the machine so that the user does not need to be bothered
with the technicalities of the machine, all, of course, for the sake of “user-
friendliness”. In the meantime philosophers keep debating for or against
the ‘art of simulation’.

Few, however, are taking up the challenge posed by Derrick H. Lehmer,
a number theorist and computer pioneer, in his paper Some high-speed logic
[Lehmer, 1963]: instead of trying to let the machine excel in the art of
simulation, or criticize it because it is poor at mimicking us, we should per-
haps start to take seriously the idea of having a fair contest/interaction,
one in which the machine is allowed to do what it is good at. Taking such
a challenge philosophically seriously, Post’s formalism put into a modern
perspective could be one possible approach. It was argued here that Post
dismissed meaning convinced that by focusing instead on the formal as-
pects/structure of mathematics it would be possible to understand some
fundamental properties of the whole of mathematics. It was this approach
which allowed Post to take form seriously, to explore it and to uncover not
only its possibilities but also its limitations. Similarly, it is perhaps by in-
teracting with and studying the computer as a machine without meaning,
stripped of its simulated “semantics”, that we will be able to understand
and explore the limitations and possibilities of computation in a context
averse to the philosophically laden idea of the mimicking machine.
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