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ABSTRACT

Anti-sparse coding aims at spreading the information uniformly over

representation coefficients and can be naturally expressed through

an ℓ∞-norm regularization. This paper derives a probabilistic for-

mulation of such a problem. A new probability distribution is intro-

duced.This so-called democratic distribution is then used as a prior

to promote anti-sparsity in a linear Gaussian inverse problem. A

Gibbs sampler is designed to generate samples asymptotically dis-

tributed according to the joint posterior distribution of interest. To

scale to higher dimension, a proximal Markov chain Monte Carlo al-

gorithm is proposed as an alternative to Gibbs sampling. Simulations

on synthetic data illustrate the performance of the proposed method

for anti-sparse coding on a complete dictionary. Results are com-

pared with the recent deterministic variational FITRA algorithm.

Index Terms— Anti-sparse representation, democratic distribu-

tion, inverse problem.

1. INTRODUCTION

Sparse representations have been widely advocated for regularizing

ill-posed inverse problems. Conversely, spreading the information

uniformly over a frame is a desirable property in various applica-

tions, e.g., to design robust analog-to-digital conversion schemes

[1] or to reduce the peak-to-average power ratio (PAPR) in multi-

carrier transmissions [2]. A similar problem has been addressed in

[3] where the Kashin’s representation of a given vector over a tight

frame is introduced as the expansion with the smallest possible dy-

namic range. The underlying optimization problem which consists

of minimizing the maximum magnitude of the representation coef-

ficients for an upper-bounded ℓ2-reconstruction error, have been in-

vestigated in depth [4, 5]. In these latest contributions, the optimal

expansion is called the democratic representation. In [6], the con-

strained signal representation problems considered in [3] and [5] are

converted into their penalized counterpart. More precisely, the so-

called spread or anti-sparse representations result from a variational

optimization problem where the admissible range of the coefficients

has been penalized through a ℓ∞-norm

min
x∈RN

1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ . (1)

In (1), H defines the M × N coding matrix and σ2 stands for the

variance of the residual resulting from the approximation. Besides,

recent applications have capitalized on these latest theoretical and al-

gorithmic advances, including approximate nearest neighbour search

[7] and PAPR reduction [8].

∗Supported in part by the BNPSI ANR Project ANR-13-BS-03-0006-01.

The present article attempts to derive a Bayesian formulation of

the anti-sparse coding problem (1) considered in [6]. Bayesian in-

ference allows fully unsupervised methods to be derived, e.g., by

including nuisance parameters and other hyperparameters into the

Bayesian model. Moreover, it permits to consider a wide range of

Bayesian estimators, beyond the standard penalized-maximum like-

lihood solution associated with (1). To the best of our knowledge,

no such probabilistic anti-sparse representation has been proposed

yet. The contributions are threefold. First, a new probability density

function (pdf), named democratic distribution, is introduced. Then,

this pdf is resorted to as a prior distribution in a linear Gaussian

inverse problem to build a probabilistic counterpart of the problem

in (1), under the maximum a posteriori (MAP) paradigm. Finally,

two instances of Markov chain Monte Carlo (MCMC) algorithms are

derived to generate samples asymptotically distributed according to

the resulting posterior distribution. These samples are subsequently

used to approximate various Bayesian estimators.

The paper is organized as follows. Section 2 introduces the

democratic pdf and its corresponding conditional distributions. For

sake of briefness, the proofs and complementary properties associ-

ated with this distribution have been omitted but can be found in

[9]. Section 3 presents the proposed hierarchical Bayesian model

for anti-sparse coding, as well as two inference algorithmic schemes.

Section 4 illustrates the performance of the proposed methods on nu-

merical experiments. Conclusions are reported in Section 5.

2. THE DEMOCRATIC DISTRIBUTION

The ℓ∞-norm penalty evoked in (1) can be used to design a new

probability distribution belonging to the exponential family, namely

the democratic distribution. More precisely, x ∈ R
N is said to be

distributed according to the democratic distribution with parameter

λ, i.e., x ∼ DN (λ), if its corresponding pdf is

f (x|λ) =
λN

2NN !
exp

(

−λ ‖x‖∞
)

. (2)

For illustration, the democratic pdf D2(3) is depicted in Fig. 1.

2.1. Conditional distributions

The ℓ∞-norm in the exponential term implicitly generates a partition

of RN composed of N double-cones Cn, where the nth component

is dominant. More precisely, each cone Cn is defined by

Cn ,

{

x = [x1, . . . , xN ]T ∈ R
N : ∀j 6= n, |xj | < |xn|

}

. (3)

Intrinsic symmetry properties of the democratic distribution lead to a

straightforward equiprobability of having a democratic vector which

belongs to any of these cones, i.e.,

P [x ∈ Cn] =
1

N
, ∀n ∈ {1, . . . , N} . (4)
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Fig. 1. The democratic pdf DN (λ) for N = 2 and λ = 3.

As a consequence, conditioning on each x ∈ Cn leads to ex-

plicit conditional distributions for its components. More particu-

larly, the conditional distributions of the so-called dominant and non-

dominant components of x ∼ DN (λ) are, respectively,

xn|x\n,x ∈ Cn ∼
λ

2
e
−λ

(

|xn|−‖x\n‖∞
)

1R\In
(xn) (5)

xn|x\n,x 6∈ Cn ∼ U (In) (6)

where x\n denotes the vector x whose nth component has been re-

moved and In ,
(

−
∥

∥x\n

∥

∥

∞
,
∥

∥x\n

∥

∥

∞

)

. Finally, Eq. (4), (5) and (6)

can be used to derive the conditional distribution of one component

given the others, by marginalizing out the event that x belongs to the

cone Cn, leading to

p
(

xn|x\n

)

= (1− cn)
1

2
∥

∥x\n

∥

∥

∞

1In
(xn)

+ cn
λ

2
e
−λ

(

|xn|−‖x\n‖∞
)

1R\In
(xn) (7)

where
cn , P

[

x ∈ Cn|x\n

]

=
1

1 + λ
∥

∥x\n

∥

∥

∞

. (8)

In other words, the conditional distribution of one component is a

mixture of one uniform distribution over In and two shifted expo-

nential distributions over R\In. This result can be exploited to de-

sign a random variate generator through the use of a Gibbs sampling

scheme [9]. It opens the door to strategies for coefficient-wise sam-

pling according to a posterior distribution resulting from a demo-

cratic prior. This will be exploited in Section 3.

2.2. Proximal operator of the negative log-pdf

The democratic pdf can be written as f(x) ∝ exp (−g(x)) with

g(x) = λ ‖x‖∞. The proximal operator of g with parameter δ is

defined by

prox
δ
g(x) = argmin

u∈RN

λ ‖u‖∞ +
1

2δ
‖x− u‖22. (9)

Up to authors’ knowledge, this minimization does not have any

closed-form solution. Nevertheless, the exact solution can be com-

puted with low computational cost, as detailed in [9]. Thus, fol-

lowing the strategy in [10], this proximal operator can be resorted

to implement a Monte Carlo algorithm to draw samples from the

democratic distribution. This strategy will be also exploited in Sec-

tion 3 to sample according to a posterior distribution resulting from

a democratic prior.

3. BAYESIAN SPARSE CODING

This section describes a Bayesian formulation of the model underly-

ing the problem described by (1).

3.1. Hierarchical Bayesian model

Likelihood Function : Let y = [y1 . . . yM ]T denote an observed

measurement vector. These observations are assumed to be related to

an unknown description vector x = [x1 . . . xN ]T through a known

coding matrix H according to the linear model

y = Hx+ e. (10)

The residual vector e = [e1 . . . eN ]T is assumed to be distributed

according to the multivariate Gaussian distribution N (0M , σ2
IM ).

The Gaussian property of the additive residual term yields the fol-

lowing likelihood function

f(y|x, σ2) =

(

1

2πσ2

)M

2

exp

[

−
1

2σ2
‖y −Hx‖22

]

. (11)

Description vector prior : The democratic distribution introduced

in Section 2 is used as the prior distribution of the N -dimensional

unknown vector x to promote anti-sparsity
x | λ ∼ DN (λ). (12)

In what follows, the hyperparameter λ is set as λ = Nµ, where µ is

assumed to be unknown. This choice allows the hyperparameter to

scale with the problem dimension, see [9].

Residual variance prior : A noninformative Jeffreys prior distribu-

tion is chosen for the residual variance σ2

f
(

σ
2) ∝

1

σ2
. (13)

Democratic parameter prior : A conjugate Gamma distribution is

chosen as a prior for µ
f (µ) ∝ µ

a
e
−bµ

(14)
where values of a and b are chosen to obtain a flat prior (e.g., a =
b = 10−3).

Joint posterior distribution : The likelihood and the priors define

above allow the joint posterior distribution to be expressed according

to the hierarchical structure

f(x, σ2
, µ|y) ∝ f(y|x, σ2)f(x, σ2|µ)f(µ) (15)

leading to

f(x, σ2
, µ|y) ∝ µ

N exp

(

−
1

2σ2
‖y −Hx‖22 − µN ‖x‖∞

)

× µ
a−1 exp (−bµ)

(

1

σ2

)M

2
+1

1R+
(σ2).

(16)

Note that for fixed nuisance parameters λ = Nµ and σ2, deriving

the MAP estimator associated with (15) is equivalent to solve (1). In

an unsupervised framework, these unknown parameters need to be

jointly estimated from the measurements or marginalized from the

joint posterior, which yields the marginal posterior distribution

f (x|y) ∝ ‖y −Hx‖
−M

2
2

(

b+N ‖x‖∞
)−(a+N)

. (17)

The next paragraph introduces a MCMC algorithm that allows a set

of samples
{

µ(t), σ2(t),x(t)
}TMC

t=Tbi+1
to be generated according to

the posterior distribution (15). Then these samples can be used to ap-

proximate the Bayesian estimators, e.g., the minimum mean square

error (MMSE) estimator x̂MMSE = E[x|y] and the marginal MAP

(mMAP) estimator x̂mMAP maximizing (17).
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3.2. Gibbs sampler

The proposed MCMC algorithm is a Gibbs sampler that consists of

successively sampling according to the conditional distributions as-

sociated with the joint distribution (15). Its main steps are described

in what follows.

Sampling the residual variance : the conditional distribution of the

residual variance is the following inverse-Gamma distribution

σ
2|y,x ∼ IG

(

M

2
,
1

2
‖y −Hx‖22

)

. (18)

Sampling the democratic hyperparameter : sampling according to

f(µ|x) is achieved as follows

µ|x ∼ G(a+N, b+N ‖x‖∞) (19)

Sampling the description vector : The description vector can

be sampled component-by-component according to the following

3-mixture of truncated Gaussian distributions

xn|x\n, µ, σ
2
,y ∼

3
∑

i=1

ωinNIin

(

µin, s
2
n

)

(20)

whereNI(·, ·) denotes the Gaussian distribution truncated on I and

I1n =
(

−∞,−
∥

∥x\n

∥

∥

∞

)

, I3n =
(∥

∥x\n

∥

∥

∞
,+∞

)

,

and I2n =
(

−
∥

∥x\n

∥

∥

∞
,
∥

∥x\n

∥

∥

∞

)

.

The probabilities ωi,n (i = 1, . . . , 3) as well as the means µi,n

(i = 1, . . . , 3) and variances s2n of these truncated Gaussian distri-

butions are given in Appendix A. Sampling according to truncated

distributions can be achieved using the strategy proposed in [11].

3.3. Proximal Metropolis Adjusted Langevin Algorithm

The proximal Metropolis adjusted Langevin algorithm (P-MALA)

[10] is a scalable alternative to the method presented in section 3.2 to

draw the full description vector x. It consists of Metropolis Hastings

moves whose proposal distribution is Gaussian with the proximal

operator of the negative log-posterior evaluated at the current point

as mean. It appears in (16) that the negative log-posterior h is given

by

h(x) =
1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ . (21)

To the best of our knowledge, no closed forme solution of (21) is

available. To alleviate this problem, a first order approximation is

considered1 , as recommended in [10]

prox
δ/2
h (x) ≈ prox

δ/2
g

(

x+ δ ∇

[

1

2σ2
‖y −Hx‖22

])

(22)

where proxδ/2
g is the proximal operator considered in section 2.2.

Hence, at iteration t of the main algorithm, new candidate are pro-

posed according to

x
∗|x(t−1) ∼ N

(

prox
δ/2
h

(

x
(t−1)

)

, δIN

)

(23)

and accepted as a new state x(t) with probability

α = min



1,
f
(

x∗|µ, σ2,y
)

f (x(t−1)|µ, σ2,y)

q
(

x(t−1)|x∗
)

q (x∗|x(t−1))



 (24)

where q is the pdf of the considered proposal. Following [10], δ is

tuned to achieve an acceptance rate between 40% and 60%.

1Note that a similar step is involved in the fast iterative truncation algo-
rithm (FITRA) [8], a deterministic counterpart of the proposed algorithm and
considered in the next section for comparison.

4. SIMULATION RESULTS ON SYNTHETIC DATA

Performance of the proposed algorithm has been evaluated thanks to

numerical experiments on synthetic data. More precisely, anti-sparse

codes x of dimension N = 50 are recovered from Gaussian obser-

vations y of size M = 30. The M × N coding matrix H is gener-

ated using randomly subsampled discrete Fourier transform (DFT),

since they have shown to yield representations with low ℓ∞-norm

[5]. The mMAP and MMSE estimators discussed in paragraph 3.1

are computed from a total of TMC = 12× 103 iterations of the two

MCMC algorithms, i.e., the full Gibbs sampler and the Gibbs sam-

pler including a P-MALA step, described in paragraph 3.2, including

Tbi = 10× 103 burn-in iterations. Performances are evaluated over

50 Monte Carlo simulations and reported in terms of reconstruction

error SNRy (to measure the coding quality) and PAPR (to measure

anti-sparsity), respectively defined by

SNRy = 10 log10
‖y‖22

‖y −Hx̂‖22
(25)

PAPR =
N ‖x̂‖2∞
‖x̂‖22

∈ [1, N ] (26)

where x̂ refers to an estimator of x.

The two proposed algorithms have been compared with FITRA,

a PAPR reduction technique detailed in [8]. FITRA directly solves

(1), but in a supervised framework, since it needs the prior knowl-

edge of the two nuisance parameters λ and σ2, i.e., the product

β , 2λσ2. Consequently, 3 configurations of FITRA are consid-

ered: β = 2σ̂2
MMSEλ̂MMSE (FITRA-mmse) where σ̂2

MMSE and

λ̂MMSE denote the MMSE estimate of these parameters recovered by

the proposed algorithm, and two distinct values of β tuned to reach

either a targeted SNRy of 20dB (FITRA-snr) or a targeted PAPR of

1.5 (FITRA-papr), respectively. Finally, the algorithms have been

compared with the least-square (LS) solution as well as the MMSE

and mMAP estimates resulting from a Bayesian model based on a

Gaussian prior in place of the democratic one, to assess the interest

of the anti-sparsity promoting prior.

Table 1. SNRy and PAPR for various algorithms. Note that

SNRy > 100 dB are considered infinite.

SNRy PAPR

P-MALA mMAP 29.3 2.78

P-MALA MMSE 19.3 3.89

Gibbs mMAP 8.8 3

Gibbs MMSE 4.3 6.9

FITRA-mmse 34.4 1.69

FITRA-papr 12.8 1.5

FITRA-snr 19.9 1.71

LS ∞ 6.63

Gibbs mMAP (Gaussian) ∞ 5.92

Gibbs MMSE (Gaussian) 73.1 6.79

Table 1 shows the average results for all considered algorithms.

Among all the proposed methods, the mMAP estimate obtained with

P-MALA has reached in average the highest SNRy (29.3 dB) for the

lowest PAPR (2.78). As a comparison, tuning FITRA to reach the

same SNRy of 29.3 DB leads to a PAPR of 1.81. Conversely, the

full Gibbs sampler leads to solutions with low SNRy and high PAPR.
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Fig 2 illustrates the variability of the results in terms of the compro-

mise between PAPR and SNRy. As a reference the average solu-

tions recovered by FITRA are plotted for a continuous range of the

hyperparameter β. Points corresponding to estimates from the three

Bayesian methods are also plotted. First one notices the bad results

obtained with the full Gibbs sampler which almost always yields so-

lutions with either zero or infinite SNRy. Further investigations have

shown that the non informative priors over the two hyperparameters

have not led to a compromise. Then, P- MALA produces solutions

close to the critical area determined by FITRA. While outperformed

by FITRA for a given PAPR, solutions resulting from the democratic

prior have a significantly lower PAPR than solutions resulting from

a Gaussian prior, which confirms the interest of the ℓ∞-penalty.

Fig. 2. SNRy as a function of PAPR. The blue line is the average

results of FITRA for the 50 Monte Carlo Simulations together with

a confidence interval.

5. CONCLUSION

This paper introduces a new probability distribution, namely the

democratic distribution, which is designed to promote anti-sparsity.

Once elected as a prior over coefficient, the inference problem was

cast as a Bayesian counterpart of anti-sparse coding. A full Gibbs

sampler was designed to successively sample in an unsupervised

way all parameters according to their individual conditional poste-

rior distributions. An alternative sampler that exploits the proximal

operator in a P-MALA step was also proposed. Relevance of the two

resulting algorithms was asserted on a synthetic experiment by in-

ferring the representation of a given measurement vector on a known

and over-complete dictionary. Performances were compared to other

methods : the supervised deterministic PAPR reduction method FI-

TRA, the least-square solution and Bayesian estimators resulting

from a Gaussian prior. Despite outperformed by FITRA, the demo-

cratic prior distribution was able to promote anti-sparse solutions.

The mMAP estimator generally provided more relevant solutions

than the MMSE estimator. P-MALA has proposed more satisfying

results in terms of SNRy and PAPR for a significantly lower compu-

tational cost, and the chain has appeared more stable. Future work

will investigate the ability of P-MALA to scale to higher dimensions.

A. POSTERIOR DISTRIBUTION OF THE

REPRESENTATION COEFFICIENTS

The mean and variances of the truncated Gaussian distributions in-

volved in the mixture distribution (20) are given by

µ1n =
1

‖hn‖2

(

h
T
nen + σ

2
λ
)

µ2n =
1

‖hn‖2

(

h
T
nen

)

µ3n =
1

‖hn‖2

(

h
T
nen − σ

2
λ
)

s
2
n =

σ2

‖hn‖
2
2

where hn denotes the nth column of H and en = y −
∑

i %=n xihi.

The weights of each mixture component are

ωin =
uin

∑3
j=1 ujn

with
u1n = exp

(

µ2
1n

2s2n
+ λ

∥

∥x\n

∥

∥

∞

)

φµ1n,s2
n

(

−
∥

∥x\n

∥

∥

∞

)

u2n = exp

(

µ2
2n

2s2n

)

×
[

φµ2n,s2
n

(∥

∥x\n

∥

∥

∞

)

− φµ2n,s2
n

(

−
∥

∥x\n

∥

∥

∞

)

]

u3n = exp

(

µ2
3n

2s2n
+ λ

∥

∥x\n

∥

∥

∞

)

(

1− φµ3n,s2
n

(∥

∥x\n

∥

∥

∞

)

)

where φµ,s2(·) is the cumulated distribution function of the normal

distributionN (µ, s2).
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