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Abstract High frequency measurements of various water characteristics and
nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-
Mer, France) have been used to identify a physiological model for phytoplankton
bloom through the fluorescence signal. An auto-regressive-moving-average with
exogenous inputs (ARMAX) model is designed and tested based on the dataset.
The model takes into account the effect of the measured water characteristics and
nutrient level information. Through this study, it is demonstrated that the devel-
oped dynamical model can be used for estimating the fluorescence level (which
characterizes the phytoplankton biomass) and for predicting the various states
of phytoplankton bloom. Thus, the developed model can be used for monitoring
phytoplankton biomass in the water which in turn might give information about
unbalanced ecosystem or change in water quality.
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1 Introduction

It is well-known that phytoplankton blooms have oscillatory explosive dynamics Evans
and Parslow [1985]. The appearance of an atypical bloom process may serve as an in-
dicator of the ecosystem balance loss signalizing that nutrient concentration has reached
unacceptably high levels. Some phytoplankton species may produce toxin under certain
conditions and their large emergence has noticeable dangerous implications on water qual-
ity and ecosystem health. For example, Algae blooms may damage higher organisms (such
as zooplankton or shellfish) providing a vast economic implication Huppert et al. [2005].
Algae blooms are also responsible for the spread of some epidemics. In Bangladesh, for
example, cholera outbreaks appear to originate from annual bloom events in the Bay of
Bengal Colwell [1996]. From another side, the annual phytoplankton blooms are natural
periodic events entrained by surrounding ecological and environmental conditions Fasham
et al. [1990].

Phytoplankton cells are capable of integrating natural and human induced disturbances
by changing their physiology. Thus it is important to prevent and detect phytoplankton
blooms at an early stage and understand their physical and nutrient conditions of outbreak.
Given the importance of phytoplankton blooms, many different modeling approaches have
been developed for understanding their underlying dynamics. The existing literature is
mainly devoted to the analysis and design of analytical simplified models Evans and
Parslow [1985], Huppert et al. [2002, 2005] described by ordinary differential equations of
the Lotka-Volterra type. However, data driven modeling approaches such as artificial neu-
ral networks or genetic algorithms have been applied to model and predict (mainly short
term prediction) phytoplankton blooms Lee et al. [2003], Muttil and Lee [2005], Muttil
and Chau [2006]. Recently in Rousseeuw et al. [2015], a numerical modeling approach
has been applied for water quality monitoring based on the Hidden Markov Model frame-
work. Such an advance became possible due to the implementation of a high frequency
measurement system at Marel-Carnot station Hernandez-Farinas et al. [2014]. This station
measures various water characteristics and nutrient information of the surrounding coastal
area. Because of its high frequency nature, it generates a large amount of data signals. In
order to create an effective water monitoring system, processing and analysis of this huge
volume of data in an unmanned and systematic way is essential.

The goal of the present work is to identify a dynamical model for phytoplankton bloom
using Marel-Carnot’s data. The identification problem has been thoroughly analyzed and
solved in the control engineering community (in applications to the technical systems).
The occurrence of a large high frequency dataset for bio-systems opens the doors for this
methodology application in this new area. The developed model obtain through system
identification is described by differential equations using the theory presented in Walter
and Pronzato [1997], Ljung [1998], Nelles [2001]), with the dynamics approximated on
the given dataset of the Marel-Carnot’s data1.

The paper is organized as follows: Section 2 discusses the pre-processing of the Marel-
Carnot’s high frequency datasets to make them suitable for the model identification pur-
pose. In Section 3, the model identification results and methods are given. The verification
and analysis of the obtained model are summarized in the Section 4. Finally, Section 5
concludes the paper.
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Table 1 Range and uncertainty in measured signals

Physico-chemical parameters Range Uncertainty
Temperature −5 to +30°C ±0.1°C

Dissolved oxygen 0 to 20 mg/L ±0.2 mg/L
pH 6.8 to 8.5 UpH ±0.2 UpH

Turbidity 0 to 4000 NTU ±10%

Fluorescence 0 to 50 FFU ±10%

Nitrate 0.1 to 100 µmol/L ±5%

Phosphate 0.1 to 100 µmol/L ±5%

Silicate 0.1 to 100 µmol/L ±5%

2 Data Preparation

Marel-Carnot station is located in the harbor of Boulogne-sur-Mer which is in the north-
east of France. The data is publicly available in the website of Ifremer2. In order to collect
the data, several fixed buoys and ferry boxes were implanted in that area. We are consid-
ering the data between 2005 and 2009 for our model identification. The dataset has 14
different data signals. However, they were measured in variable frequency, i.e. the total
amount of data points for each signal are not the same. The data can be classified into two
categories based on the frequency of measurements:

1. 11 water characteristics (collected every 20 minutes),

2. 3 nutrient level information (collected every 12 hours).

Water characteristics include 3 different kinds of dissolved oxygen (uncorrected, salinity
corrected and saturated), water salinity level, air temperature, luminosity, water pH level,
turbidity, fluorescence, water temperature and height of the sea level. The three nutrients
are nitrate, phosphate and silicate. The amount of uncertainty in the measurements can be
seen in table 13.

An important signal to be considered is the fluorescence signal. This signal charac-
terizes the phytoplankton biomass. So, from this signal we can evaluate the amount of
phytoplankton and its various states like in pre-blooming, blooming, post-blooming, no
production of biomass and rare events. This signal recorded in between 2005 and 2009
with a 20 minutes measurement frequency can be seen in Fig. 1.

From Fig. 1, it can be seen that phytoplankton blooms are annual periodic events en-
trained by surrounding ecological and environmental conditions as mentioned in Colwell
[1996]. It can also be noticed that the data points are missing very frequently deteriorating
the quality of data. The data quality plays an important role in system identification. So,
by using exactly this data, we cannot identify a very high quality model that captures most
of the dynamics of the phytoplankton’s biomass.

One of the ways to overcome this limitation of data (i.e. frequent missing data points)
can be data averaging. Averaging is a very common technique in biological domain to
reduce the effect of noise and missing data points. Moreover, it helps to reduce and simplify
the computation and presentation of the data. After some mathematical manipulations, we
found that 1-day averaging is able to captures almost the same dynamics of the original
data but with scaled down amplitude. Moreover, it also smooths the original signal and
reduces the noise as well. In Fig. 2, the 1-day averaged fluorescence signal can be seen.
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Figure 1 Fluorescence signal between 2005 and 2009

Figure 2 1-day averaged fluorescence signal between 2005 and 2009
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Figure 3 Air and water temperature

Figure 4 Uncorrected and salinity corrected dissolved oxygen

Besides fluorescence, we also have 13 more signals. For example, we have two different
temperature signals like air and water temperature. In general, the temperatures of water
and air are of periodic nature. The temperatures rise in the summer and go down in the
winter. Moreover, the water temperature of the sea varies less than the air above the water.
The temperatures are presented in Fig. 3.

Dissolved oxygen is a very important criterion for water quality measurement. It is
well-known that many chemical and biological reactions in ground water and surface wa-
ter depend directly or indirectly on the amount of available oxygen. Dissolved oxygen is
necessary in aquatic systems for the survival and growth of many aquatic organisms and
used as an indicator of the health of surface water bodies Wilde et al. [1998].

Many factors influence the dissolved oxygen measurements, and salinity is one of them.
The on-board sensor implanted in the ferry box calculated the dissolved oxygen without
considering the salinity. This sensor-calculated oxygen is named "uncorrected oxygen”.
Later it was corrected by incorporating the effect of salinity. This dissolved oxygen is
labelled "salinity corrected oxygen”. The uncorrected and salinity corrected dissolved oxy-
gen are given in Fig. 4.
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Figure 5 Water salinity, turbidity and height of the sea level

Figure 6 Nitrate, phosphate and silicate signals

Some other important water characteristics are turbidity, salinity and sea level. Tur-
bidity is a measure of water clarity which can affect the color of water. A high turbidity
increases the water temperature which in turn reduces the concentration of dissolved oxy-
gen. Excessive algal growth is one of the reasons of high turbidity Wang [1974]. Salinity
has an effect on the density of the sea water (high salinity increases the density). These
signals can be seen in Fig. 5.

Nutrients (like nitrate, silicate and phosphate) play an important role in the production
of the phytoplankton biomass. So, data about these three nutrients can give us very valuable
information regarding various states of the phytoplankton biomass production. These three
nutrient signals can be seen in Fig. 6.

Like fluorescence signal, 1-day averaging was also applied to all other signals to over-
come the data limitation (i.e. frequent missing data points, variable frequency sampling
etc.).



8 H. Ahmed et al.

Figure 7 Structure of the dynamical model under consideration

3 Model Identification

Our goal is to identify a dynamical model that will be able to predict the phytoplankton
bloom considering surrounding ecological and environmental conditions. In model/system
identification, selecting the inputs and outputs of the model is very important. In order to
model the phytoplankton blooms, the fluorescence signal, which characterizes the biomass
of the phytoplankton has been chosen as the output of our model, and other 13 signals (3
nutrients and 10 water characteristics) have been considered as inputs of our model.

Moreover, since the dynamical relation between the inputs and output are not very well
known in our case, we have taken an engineering approach based on black-box model ar-
chitecture. One of the reasons of using this approach is our previous work experience in
biological domain. We have previously successfully applied black-box approach in mod-
eling the valve opening activity of a population of oysters where the relation of the inputs
(like sun position, moon position and water tide level) with the output (i.e. valve opening
activity) was also not well known Ahmed et al. [2017, 2014].

The graphical representation of the model structure considering fluorescence as output
and other signals (dissolved oxygen, luminosity, salinity, pH, turbidity, nitrate, phosphate,
silicate, sea level, water temperature, air temperature) as inputs can be seen in Fig. 7.

The generic structure of the dynamical model for phytoplankton bloom can be repre-
sented as follows:

yk = F (yk−1, . . . , yk−ν ;x1,k, . . . , x1,k−µ; . . . ;

x13,k, . . . , x13,k−µ; θ) + εk (1)

where y is the output (i.e. fluorescence), x1, . . . , x13 denote the inputs, ν ≥ 0 is the number
of past output values taken into account to determine the fluorescence level at the next
time instant k (i.e. in this model k − 1 is the current time instant and yk−1 is the current
fluorescence level state), µ ≥ 0 is the number of past input values used in the decision on
the value of yk (the model (1) assumes that the instant values of x1,k, . . . , x13,k can be used
for this decision), εk ∈ R is the disturbance representing additional uncertain influencing
forces and approximation errors (it is assumed that this term is sufficiently small if the
model has been well identified); θ ∈ Rq, q > 0 is the vector of constant parameters of the
model (1) and F : Rν+13µ+13+q

+ → R+ is a function defining the model structure.
The identification procedure for the above mentioned model consists of selecting an ap-

propriate structure for the function of F (.) with posterior calculation of the corresponding
vector of parameters θ. Out of many possible choices for F (.), we have chosen ARMAX
model structure. The ARMAX (auto-regressive-moving-average with exogenous inputs)
model is one of the most popular model structures used for identification in various fields
of science Ljung [1998], Nelles [2001], Walter and Pronzato [1997]. Its advantages include
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linearity with respect to all signals and parameters, different effective methods for calcu-
lation of the parameters, simplicity of stability analysis of the obtained model, robustness
and sensitivity with respect to perturbations Ljung [1998]. Therefore, the function F (.) in
equation (1) is selected in the following form:

F (.) =

ν∑
i=1

θyi yk−i +

µ∑
j=0

θx1
j x1,k−j + · · ·+

µ∑
j=0

θx13
j x13,k−j

with θ =
[
θy1 , . . . , θ

y
ν , θ

x1
1 , · · · , θx1

µ , . . . , θ
x13
1 , · · · , θx13

µ

]T
.

Using least-square method Ljung [1998], Nelles [2001], Walter and Pronzato [1997],
the estimate θ̂ of the parameters θ have been calculated for Marel-Carnot high frequency
dataset as

θ̂ =
(

ΦTΦ
)−1

ΦTΥ,

where Υ =
[
yν+1, . . . , yL

]T
and the jth row of the matrix Φ is

Φj = [ yj+ν−1, . . . , yj , x1,j+ν , . . . , x1,j+ν−µ, . . . , x13,j+ν , . . . , x13,j+ν−µ]

for all 1 ≤ j ≤ L− ν, where L is the length of the training dataset.

4 Model Verification and Analysis

Two performance costs Jε and Jp have been calculated to evaluate the obtained accuracy of
the designed model. The cost Jε estimates the average amplitude of εk (the approximation
errors in the model):

Jε =

√∑L−ν
j=1 ε

2
j

L− ν

where εj = yj+ν − ŷj+ν , ŷj+ν = ΦTj θ̂, 1 ≤ j ≤ L− ν.
The cost Jp evaluates the prediction quality of the model on an infinite time interval:

Jp =

√∑L−ν
j=1 e

2
j

L− ν

where ej = yj+ν − ỹj+ν , 1 ≤ j ≤ L− ν and

ỹk = yk, 1 ≤ k ≤ ν

ỹν+j =

ν∑
i=1

θyi ỹν+j−i +

µ∑
z=0

θx1
i x1,ν+j−z + · · ·

+

µ∑
z=0

θx13
i x13,ν+j−z, 1 ≤ j ≤ L− ν
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Figure 8 The result of the model numerical verification (training dataset is of 3 years)

are the estimates of the fluorescence signal yk generated independently by the designed
model in the presence of the same inputs signals and L is the length of the validation
dataset. Example of the obtained estimates ŷ and ỹ (for ν = µ = 10, i.e. considering 10
days of memory) can be seen in Fig. 8, 9 and 10 respectively for different training and
validation dataset. In Fig. 8, data from the first three years have been used for training.
Similarly, in Fig. 9, data from the first four years have been used for training. Finally, the
entire dataset has been used for training in Fig. 10. The entire dataset has been used for
validation in all the cases.

From the model numerical verification results, we can conclude that the model demon-
strates a sufficiently good accuracy of representation of the dynamic behavior of fluores-
cence of phytoplankton using the high frequency data measurements. However, the accu-
racy depends on the length of the training dataset. From Fig. 8 and 9, it is clear that the
accuracy of our model decreases as we reduce the length of the training dataset. This is
partly because of the frequently missing data points. In system identification, the quality of
the identified model depends heavily on the quality of the dataset. Frequently missing data
points degrades the quality of the dataset which in turns affects the quality of the identified
model.

Another important point is that the behaviour of the fluoresence signal is significantly
different from year to year. While most of the inputs were very periodic, the fluorescence
signal didn’t follow the same way. So, a model trained on the earlier years may perform
less satisfactorily in the later years during the validation phase. This limitation impacts
directly the accuracy of the prediction. This problem can be overcome by using data of
longer length i.e., 10− 15 years or more. Other factors may also had an impact on the algal
growth. For example, unmeasured parameters like zooplankton, direction of wind, wind
velocity etc. may have played an important role on the growth of the phytoplankton. It was
reported in the literature Fitch and Moore [2007], Moser et al. [2012] that wind direction
has an impact on the growth. Considering all these factors may improve the prediction
accuracy in the future.

5 Conclusion

This paper presents the first development of a dynamical model for phytoplankton bloom
from system identification point of view. The developed model takes into account the effect
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Figure 9 The result of the model numerical verification (training dataset is of 4 years)

Figure 10 The result of the model numerical verification (training dataset is of 5 years)

of the various water characteristics such as dissolved oxygen, water salinity, pH, sea level,
air and water temperature and luminosity along with information about three different nu-
trients (namely nitrate, silicate and phosphate). A generic "black-box” modeling approach
has been used and an ARMAX structure of the model has been selected. The obtained
model has been able to predict successfully the fluorescence level (which characterizes
phytoplankton biomass) with a good prediction error.

In future works, more sophisticated model structures have to be analyzed. This paper
did not include any biological hypothesis in the modeling process. This is under consider-
ation for future investigation. This work approximated the dynamics of the model from the
dataset. In our research ahead, an alternative for this approximation may include the devel-
opment of ordinary differential equation based dynamical model and comparing the result
with the dataset for validation purpose. Regarding inputs of the model, the vectors of in-
puts can be extended by including wind velocity and direction of the wind, since they may
play an important role in the accumulation of biomass for the phytoplankton. Finally, some
improvements can be made by considering the impact of correlation among the various
inputs on parameter estimates.
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