Identification of a dynamical model for phytoplankton bloom based on high frequency measurements

Abstract : High frequency measurements of various water characteristics and nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-Mer, France) have been used to identify a physiological model for phytoplankton bloom through the fluorescence signal. An auto-regressive-moving-average with exogenous inputs (ARMAX) model is designed and tested based on the dataset. The model takes into account the effect of the measured water characteristics and nutrient level information. Through this study, it is demonstrated that the developed dynamical model can be used for estimating the fluorescence level (which characterizes the phytoplankton biomass) and for predicting the various states of phytoplankton bloom. Thus, the developed model can be used for monitoring phytoplankton biomass in the water which in turn might give information about unbalanced ecosystem or change in water quality.
Type de document :
Article dans une revue
International Journal of Environment and Pollution, Inderscience, 2017
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01586791
Contributeur : Rosane Ushirobira <>
Soumis le : mercredi 13 septembre 2017 - 11:49:57
Dernière modification le : vendredi 17 novembre 2017 - 08:50:20

Fichier

authorFinalVersion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01586791, version 1

Collections

Citation

Hafiz Ahmed, Rosane Ushirobira, Denis Efimov, Wilfrid Perruquetti. Identification of a dynamical model for phytoplankton bloom based on high frequency measurements. International Journal of Environment and Pollution, Inderscience, 2017. 〈hal-01586791〉

Partager

Métriques

Consultations de la notice

90

Téléchargements de fichiers

36