P. A. Merolla, J. V. Arthur, R. Alvarez-icaza, A. S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, vol.9, issue.2, pp.668-673, 2014.
DOI : 10.1007/BF00166411

S. B. Eryilmaz, S. Joshi, E. Neftci, W. Wan, G. Cauwenberghs et al., Neuromorphic architectures with electronic synapses, 2016 17th International Symposium on Quality Electronic Design (ISQED), pp.118-123, 2016.
DOI : 10.1109/ISQED.2016.7479186

G. E. Hinton, S. Osindero, and Y. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, vol.18, issue.7, pp.1527-1554, 2006.
DOI : 10.1162/jmlr.2003.4.7-8.1235

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

J. Yang, M. Pickett, X. Li, D. Ohlberg, D. Stewart et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotechnology, vol.49, issue.7, pp.429-433, 2008.
DOI : 10.1038/nnano.2008.160

C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, Design implications of memristor-based rram cross-point structures, DATE. IEEE, pp.734-739, 2011.

M. Prezioso, F. Merrikh-bayat, B. Hoskins, G. Adam, K. K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature, vol.12, issue.2, pp.61-64, 2015.
DOI : 10.1007/978-3-642-35289-8_3

T. Driscoll, H. Kim, B. Chae, M. D. Ventra, and D. N. Basov, Phase-transition driven memristive system, Applied Physics Letters, vol.95, issue.4, p.43503, 2009.
DOI : 10.1073/pnas.0806642106

S. B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. Brightsky et al., Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses, pp.205-56, 2014.
DOI : 10.1109/TED.2011.2147791

Q. Liu, S. Long, H. Lv, W. Wang, J. Niu et al., Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode, ACS Nano, vol.4, issue.10, pp.6162-6168, 2010.
DOI : 10.1021/nn1017582

O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, Design exploration methodology for memristor-based spiking neuromorphic architectures with the Xnet event-driven simulator, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.7-12, 2013.
DOI : 10.1109/NanoArch.2013.6623029

M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello et al., Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses, IEEE Transactions on Electron Devices, vol.60, issue.7, pp.2402-2409, 2013.
DOI : 10.1109/TED.2013.2263000

URL : https://hal.archives-ouvertes.fr/hal-00871918

A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil et al., A ferroelectric memristor, Nature Materials, vol.83, issue.10, 2012.
DOI : 10.1063/1.1621731

Y. Nishitani, Y. Kaneko, and M. Ueda, Artificial synapses using ferroelectric memristors embedded with CMOS Circuit for image recognition, 72nd Device Research Conference, pp.297-298, 2014.
DOI : 10.1109/DRC.2014.6872414

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, Immunity to Device Variations in a Spiking Neural Network With Memristive Nanodevices, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.288-295, 2013.
DOI : 10.1109/TNANO.2013.2250995

]. W. Gerstner, R. Ritz, and J. L. Hemmen, Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns, Biological Cybernetics, vol.76, issue.5-6, pp.5-6, 1993.
DOI : 10.1007/978-3-642-69421-9_14

H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs, Science, vol.275, issue.5297, pp.213-215, 1997.
DOI : 10.1126/science.275.5297.213

B. Babadi and L. F. Abbott, Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity, PLOS Computational Biology, vol.15, issue.1, p.1004750, 2016.
DOI : 10.1371/journal.pcbi.1004750.s004

M. Shahsavari, P. Falez, and P. Boulet, Combining a Volatile and Nonvolatile Memristor in Artificial Synapse to Improve Learning in Spiking Neural Networks, 12th ACM/IEEE International Symposium on Nanoscale Architectures, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01368954

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

D. F. Goodman, R. Brette, D. Goodman, R. Brette, S. B. Furber et al., Brian: a simulator for spiking neural networks in Python The SpiNNaker Project, Proceedings of the IEEE, pp.652-665, 2008.

B. V. Benjamin, P. Gao, E. Mcquinn, S. Choudhary, A. R. Chandrasekaran et al., Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations, Proceedings of the IEEE, vol.102, issue.5, pp.699-716, 2014.
DOI : 10.1109/JPROC.2014.2313565

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier et al., A wafer-scale neuromorphic hardware system for large-scale neural modeling, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.1947-1950, 2010.
DOI : 10.1109/ISCAS.2010.5536970

K. Boahen, Point-to-point connectivity between neuromorphic chips using address events, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp.416-434, 2000.
DOI : 10.1109/82.842110

E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. C. Liu et al., Scalable energy-efficient, low-latency implementations of trained spiking Deep Belief Networks on SpiNNaker, 2015 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2015.
DOI : 10.1109/IJCNN.2015.7280625

S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch et al., Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores, The 2013 International Joint Conference on Neural Networks (IJCNN), pp.1-10, 2013.
DOI : 10.1109/IJCNN.2013.6706746

K. Wendt, M. Ehrlich, and R. Schüffny, A Graph Theoretical Approach for a Multistep Mapping Software for the FACETS Project, Proceedings of the 2Nd WSEAS International Conference on Computer Engineering and Applications, ser. CEA'08. Stevens Point, pp.189-194, 2008.

G. Indiveri and S. Liu, Memory and Information Processing in Neuromorphic Systems, Proceedings of the IEEE, pp.1379-1397, 2015.
DOI : 10.1109/JPROC.2015.2444094

A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller et al., PyNN: a common interface for neuronal network simulators, Frontiers in Neuroinformatics, vol.2, 2008.
DOI : 10.3389/neuro.11.011.2008

URL : https://hal.archives-ouvertes.fr/hal-00586786

M. Shahsavari, P. Devienne, and P. Boulet, N2s3, a Simulator for the Architecture Exploration of Neuromorphic Accelerators Available: https, DATE. [Online], 2015.

P. Boulet, P. Devienne, P. Falez, G. Polito, M. Shahsavari et al., N2s3, an Open-Source Scalable Spiking Neuromorphic Hardware Simulator Available: https, Sciences et Research Report, 2017.

J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg et al., A hybrid nanomemristor/transistor logic circuit capable of self-programming, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.1699-1703, 2009.
DOI : 10.1117/12.774144

F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant et al., An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse, Advanced Functional Materials, vol.1, issue.2, pp.330-337, 2010.
DOI : 10.1002/adfm.200901335

URL : https://hal.archives-ouvertes.fr/hal-00548959

G. Indiveri, B. Linares-barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures, Nanotechnology, vol.24, issue.38, p.384010, 2013.
DOI : 10.1088/0957-4484/24/38/384010

H. Paugam-moisy, S. Bohte, G. Rozenberg, T. Bäck, and J. N. Kok, Computing with Spiking Neuron Networks, Handbook of Natural Computing, pp.335-376
DOI : 10.1007/978-3-540-92910-9_10

URL : https://hal.archives-ouvertes.fr/hal-01587781

R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman et al., Simulation of networks of spiking neurons: A review of tools and strategies, Journal of Computational Neuroscience, vol.25, issue.54, pp.349-398, 2007.
DOI : 10.1017/CBO9780511623271

URL : https://hal.archives-ouvertes.fr/hal-00180662

D. Wyatt and A. Concurrency, USA: Artima Incorporation, 2013.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2323, 1998.
DOI : 10.1109/5.726791

Y. Lecun, Y. Bengio, O. Bichler, D. Querlioz, S. J. Thorpe et al., Convolutional networks for images, speech, and time series Available: https://www.researchgate.net/profile/Yann Lecun/publication/2453996 Convolutional Networks for Images Speech and Time-Series/links Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity, and neural networks, pp.339-348, 1995.

M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet et al., An overview of the Scala programming language, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2006.

S. Liu and R. Douglas, Temporal Coding in a Silicon Network of Integrate-and-Fire Neurons, IEEE Transactions on Neural Networks, vol.15, issue.5, pp.1305-1314, 2004.
DOI : 10.1109/TNN.2004.832725

E. Chicca, D. Badoni, V. Dante, M. D. Andreagiovanni, G. Salina et al., A vlsi recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory, IEEE Transactions on Neural Networks, vol.14, issue.5, pp.1297-1307, 2003.
DOI : 10.1109/TNN.2003.816367

G. Indiveri, Neuromorphic bistable VLSI synapses with spiketiming-dependent plasticity, Advances in Neural Information Processing Systems (NIPS), pp.1091-1098, 2003.

H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, Memristor Bridge Synapses, Proceedings of the IEEE, vol.100, issue.6, pp.2061-2070, 2012.
DOI : 10.1109/JPROC.2011.2166749

F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-gotarredona et al., A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing, Advanced Functional Materials, vol.15, issue.3, pp.609-616, 2012.
DOI : 10.1021/la981379u

URL : https://hal.archives-ouvertes.fr/hal-00787366

M. Shahsavari, M. Nadeem, S. A. Ostadzadeh, P. Devienne, and P. Boulet, Unconventional digital computing approach: memristive nanodevice platform, physica status solidi (c), vol.12, issue.1-2, pp.222-228, 2008.
DOI : 10.1002/pssc.201400069

URL : https://hal.archives-ouvertes.fr/hal-01116577

D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, Learning with memristive devices: How should we model their behavior?, 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp.150-156, 2011.
DOI : 10.1109/NANOARCH.2011.5941497

T. Serrano-gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-barranco, STDP and STDP variations with memristors for spiking neuromorphic learning systems, Frontiers in Neuroscience, vol.7, issue.2, 2013.
DOI : 10.3389/fnins.2013.00002

URL : https://hal.archives-ouvertes.fr/hal-01578521

B. Nessler, M. Pfeiffer, and W. Maass, STDP enables spiking neurons to detect hidden causes of their inputs, Advances in Neural Information Processing Systems 22, pp.1357-1365, 2009.

E. Marder and J. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nature Reviews Neuroscience, vol.15, issue.7, pp.563-574, 2006.
DOI : 10.1016/j.neuint.2005.12.029

Y. Liu, J. A. Starzyk, and Z. Zhu, Optimizing number of hidden neurons in neural networks, Proceedings of the 25th Conference on Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, ser. AIAP'07, pp.121-126, 2007.

S. Lawrence, C. L. Giles, and A. C. Tsoi, What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation

A. Morrison, M. Diesmann, and W. Gerstner, Phenomenological models of synaptic plasticity based on spike timing, Biological Cybernetics, vol.97, issue.1, pp.459-478, 2008.
DOI : 10.4249/scholarpedia.1430

M. Fatahi, M. Ahmadi, M. Shahsavari, A. Ahmadi, and P. Devienne, evt mnist: A spike based version of traditional MNIST, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382631

P. J. Drew and L. F. Abbott, Extending the effects of spike-timing-dependent plasticity to behavioral timescales, Proceedings of the National Academy of Sciences, vol.19, issue.21, pp.8876-8881, 2006.
DOI : 10.1126/science.8036517

D. Querlioz, O. Bichler, and C. Gamrat, Simulation of a memristorbased spiking neural network immune to device variations, The 2011 International Joint Conference on Neural Networks (IJCNN), pp.1775-1781, 2011.

G. Indiveri, B. Linares-barranco, T. J. Hamilton, A. Van-schaik, R. Etienne-cummings et al., Neuromorphic Silicon Neuron Circuits, Frontiers in Neuroscience, vol.5, 2011.
DOI : 10.3389/fnins.2011.00073

URL : https://hal.archives-ouvertes.fr/hal-00597675

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

A. Sboev, D. Vlasov, A. Serenko, R. Rybka, and I. Moloshnikov, A comparison of learning abilities of spiking networks with different spike timing-dependent plasticity forms, Journal of Physics: Conference Series, vol.681, issue.1, pp.120131742-6596, 2016.
DOI : 10.1088/1742-6596/681/1/012013