T. Burger, Geometric Interpretations of Conflict: A Viewpoint, Belief Functions: Theory and Applications, pp.412-421, 2014.
DOI : 10.1109/QR2MSE.2013.6625712

T. Burger and S. Destercke, HOW TO RANDOMLY GENERATE MASS FUNCTIONS, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.21, issue.05, pp.645-673, 2013.
DOI : 10.1016/j.ijar.2007.01.005

URL : https://hal.archives-ouvertes.fr/hal-00867938

M. E. Cattaneo, Combining belief functions issued from dependent sources, Third International Symposium on Imprecise Probabilities and Their Applications (SIPTA'03), pp.133-147, 2003.

E. G. Marco and . Cattaneo, Belief functions combination without the assumption of independence of the information sources, International Journal of Approximate Reasoning, vol.52, issue.3, pp.299-315, 2011.

F. Cuzzolin, Geometry of Dempster's Rule of Combination, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.34, issue.2, pp.961-977, 2004.
DOI : 10.1109/TSMCB.2003.818431

A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

URL : http://doi.org/10.1214/aoms/1177698950

T. Denoeux, Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, Artificial Intelligence, vol.172, issue.2-3, pp.234-264, 2008.
DOI : 10.1016/j.artint.2007.05.008

S. Destercke and T. Burger, Toward an axiomatic definition of conflict between belief functions. Cybernetics, IEEE Transactions on, vol.43, issue.2, pp.585-596, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00766122

S. Destercke and D. Dubois, Idempotent conjunctive combination of belief functions: Extending the minimum rule of possibility theory, Information Sciences, vol.181, issue.18, pp.3925-3945, 2011.
DOI : 10.1016/j.ins.2011.05.007

URL : https://hal.archives-ouvertes.fr/hal-00651875

D. Dubois and H. Prade, A SET-THEORETIC VIEW OF BELIEF FUNCTIONS Logical operations and approximations by fuzzy sets???, International Journal of General Systems, vol.1, issue.3, pp.193-226, 1986.
DOI : 10.1016/0165-0114(78)90029-5

D. Dubois, W. Liu, J. Ma, and H. Prade, The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks, Information Fusion, vol.32, pp.12-39
DOI : 10.1016/j.inffus.2016.02.006

URL : https://hal.archives-ouvertes.fr/hal-01484952

D. Dubois and H. Prade, Consonant approximations of belief functions, International Journal of Approximate Reasoning, vol.4, issue.5-6, pp.419-449, 1990.
DOI : 10.1016/0888-613X(90)90015-T

URL : https://doi.org/10.1016/0888-613x(90)90015-t

D. Dubois and H. Prade, Focusing vs. belief revision: A fundamental distinction when dealing with generic knowledge, Qualitative and quantitative practical reasoning, pp.96-107, 1997.
DOI : 10.1007/BFb0035615

D. Dubois, H. Prade, and P. Smets, A definition of subjective possibility, Memory of Philippe Smets, pp.352-364, 2008.
DOI : 10.1016/j.ijar.2007.01.005

URL : https://doi.org/10.1016/j.ijar.2007.01.005

D. Dubois, H. Prade, and P. Smets, A definition of subjective possibility, International Journal of Approximate Reasoning, vol.48, issue.2, pp.352-364, 2008.
DOI : 10.1016/j.ijar.2007.01.005

D. Dubois, R. Ronald, and . Yager, Fuzzy set connectives as combinations of belief structures, Information Sciences, vol.66, issue.3, pp.245-276, 1992.
DOI : 10.1016/0020-0255(92)90096-Q

B. Ducourthial and V. Cherfaoui, Experiments with Self-Stabilizing Distributed Data Fusion, 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS), pp.289-296, 2016.
DOI : 10.1109/SRDS.2016.046

URL : https://hal.archives-ouvertes.fr/hal-01378667

A. Jousselme, D. Grenier, and E. Bossé, A new distance between two bodies of evidence, Information Fusion, vol.2, issue.2, pp.91-101, 2001.
DOI : 10.1016/S1566-2535(01)00026-4

J. Klein, S. Destercke, and O. Colot, Idempotent Conjunctive Combination of Belief Functions by Distance Minimization, pp.156-163
DOI : 10.1016/j.ijar.2016.01.001

URL : https://hal.archives-ouvertes.fr/hal-01396205

J. Klein, S. Destercke, and O. Colot, Interpreting evidential distances by connecting them to partial orders: Application to belief function approximation, International Journal of Approximate Reasoning, vol.71, pp.15-33, 2016.
DOI : 10.1016/j.ijar.2016.01.001

URL : https://hal.archives-ouvertes.fr/hal-01263550

F. Pichon and A. Jousselme, A norm-based view on conflict, Proceedings of the Rencontres Francophones sur la Logique Floue et ses Applications, pp.153-159, 2016.

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.447-458, 1990.
DOI : 10.1109/34.55104

P. Smets, The concept of distinct evidence, IPMU 92 Proceedings. pg, pp.789-794, 1992.

P. Smets, The canonical decomposition of a weighted belief, 14th international joint conference on Artificial intelligence, pp.1896-1901, 1995.

P. Smets, The application of the matrix calculus to belief functions, International Journal of Approximate Reasoning, vol.31, issue.1-2, pp.1-30, 2002.
DOI : 10.1016/S0888-613X(02)00066-X

P. Smets, Analyzing the combination of conflicting belief functions, Information Fusion, vol.8, issue.4, pp.387-412, 2007.
DOI : 10.1016/j.inffus.2006.04.003

P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
DOI : 10.1016/0004-3702(94)90026-4

URL : https://hal.archives-ouvertes.fr/hal-01185821

L. A. Zadeh, A Simple View of the Dempster-Shafer Theory of Evidence and its Implication for the Rule of Combination, the Artificial Intelligence Magazine, vol.7, pp.85-90, 1986.
DOI : 10.1142/9789814261302_0033