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“The past went that-a-way. When faced with a totally new situation, we tend always to attach

ourselves to the objects, to the flavor of the most recent past. We look at the present through a rear-

view mirror. We march backward into the future.”

(Marshall MacLuhan 1967)

1. INTRODUCTION. `ES GIBT KEINE SIMULATION’

What, if anything, is the impact of technology x on science y? While instances of this kind of

questions have long been neglected within more traditional history and philosophy of science, the 

steady reversal of the primacy in the science-technology relation since the 1980s (Forman 2007) has

given these questions new relevance and put them into a methodological framework where the 

focus is much more on how certain technological advances affect and shape scientific practice and 

the knowledge it produces. This focus on technology is, in itself, a historical phenomenon and 

partially rooted in the growing dependencies between certain branches of science and increasingly 

complex, and often expensive, technologies where the latter require an expertise which is not 

necessarily that of the scientist or team of scientists using the technology. 

One  important  driving  factor  in  this  development  was  the  possibility  of  high-speed

computation.  Indeed,  today  most,  if  not  all,  such  technological  complexes  require  intricate

computational  set-ups  which  are  used  in  a  way  which  was  simply  not  possible  before  the

development of the high-speed computer. It is from that context that one can understand the recent

attention for so-called computational science and the changing role and identity of computer science

in the disciplinary spectrum from a discipline struggling for independence from mathematics and

engineering to one which has by some been identified as an entirely new scientific domain on a par

with the life, physical and social sciences (Tedre 2015; Rosenbloom 2015). Thus, one important

instance of the above question is: 

1 Part of this work is based on a talk given at the conference The Plurality of Numerical Methods in Computer 
Simulations and their Philosophical Analysis, 3-4 November 2011, titled ENIAC, matrix of numerical 
simulation(s). The talk was prepared by M. Bullynck, M. Carlé and myself and dedicated to the memory of 
Friedrich Kittler. 

2 This paper is to some extent determined by some of the ideas elaborated in the ANR project PROGRAMme (ANR-
17-CE38-0003-01). I am indebted to Maarten Bullynck, Martin Carlé and Mark Priestley for discussing aspects of 
this paper. Special thanks go to Sibylle Anderl, Arianna Borrelli, Nathalie Bredella, Rudi Seising and Janina 
Wellmann for their extensive comments on an earlier version of this paper. 



What, if anything, is the effect of high-speed computation on science y?

The current historical (and philosophical) literature which deals with this question focuses

for the most part on one particular aspect of that question, viz. the impact of computer simulation

(Hashagen 2013).3 One of the standard historical references in this context is Galison’s work on

Monte Carlo methods and how it required as a simulation method the constitution of a so-called

trading zone where different practices (including technological and scientific practices) are locally

coordinated by relying on a so-called pidgin language (Galison 1997; Galison 2011). But while

Galison’s work is surely an important contribution to the field, it is in need of a revision (See also

(Borelli forthcoming)). Indeed, since Galison, hardly any work has been done to reconsider this

almost mythical beginning of computer simulation in the ENIAC context. 

In the meantime, in the more philosophical and epistemological literature, it  has become

clear that simulation does not have one stable meaning but covers a number of understandings that

give different answers to the question: 

What, if anything, is the impact of (computer) simulation on science y?

For  instance,   in  (Duran,  forthcoming)4 it  is  argued  that  there  are  two basic  interpretations  of

computer simulation that co-exist not just within the current philosophical literature but throughout

the (short) history of computer simulations. These are:

1. Simulations as problem-solving techniques:  this  viewpoint comes down to the idea of

using computer simulations to solve a set of mathematical equations or, in short, to implement the

model. It is here that one can situate the idea of simulations as models in time or dynamical models

for short (Cfr Hartmann 1996). In this framework, the idea of one process which imitates another

plays a central role.  

2.  Simulations  as  descriptions  of  patterns: under  this  view a simulation  is  a  model  for

describing different patterns of behavior of a target system (Humphreys 2004) 

Each of these viewpoints result in a set of different philosophical assumptions related to the

supposed epistemological significance of simulations. One example of this concerns the question of

the relation between “traditional” experiments and simulations. 

The focus of these more philosophical works  is thus on how simulation challenges (or not)

more classical issues within the philosophy of science and so gives precedence to science rather

than to technology. Moreover, these works often lack an in-depth historical perspective and assume

3 This is to some extent explained by the fact that the main community of historians of computing identifies itself as 
historians of technology rather than of science and so not too much attention has been given to actual scientific practices
in that community. See (Hashagen 2013) for an overview and further bibliographical details and (De Mol and Bullynck,
forthcoming) for a critical reflection on the difficult relation between historians of computing and history of science 
(and, more particularly, mathematics). 
4 I am indebted to Juan Duran for having shared with me an earlier draft of this paper.



a kind of stability of concepts over time (Duran forthcoming).5 One notable example of this is the

fact  that  many  philosophical  discussions  on  simulation  focus  on  the  philosophical  novelty  of

simulation (or lack thereof) but at the same time ignore the existing historical work which attacks

the singularity idea of the computer and which emphasizes also the continuities with older practices

in order to isolate more clearly what really changed in the history of science in the 1940s and 1950s

due to the computer (and which lay the basis for the later work).  

The aim of this paper is to revisit the so-called roots of computer simulation in ENIAC in

order  to  contribute to  such historical  perspective.  I  will  do this  by developing two related but

distinct claims. First of all, I will show how, around ENIAC, one can find a diversity of practices

which one tends to ignore if one focuses only on the ENIAC as the originator of Monte Carlo

simulation. This broadens the outlook on “simulation” in those pioneering years which thus has

different forms not just chronologically but also diachronologically. Secondly, I will develop the

claim that around ENIAC there is no simulation,6 both in a historical as well as in a methodological

sense. From the historical perspective, it should be pointed out that, as far as I know, the notion of

simulation is, within the ENIAC context, not a standard term to use.7 Secondly, and more important,

the idea that there is no simulation is also taken as a methodological approach in this paper: instead

of focusing on what is being simulated (weather; neutron behavior; bombing behavior; etc) the

approach here is to look at “simulation” from the perspective of what it is, as structured by the

interrelations between three fundamental levels of the practice:

(1) the mathematics used and developed (human)

(2) the (logical organization of the) program (human-machine)

(3) the physicality of the machine (machine)

In order to develop these claims, this paper is structured in two main sections. In Sec. 2, I

will introduce the ENIAC and engage with some of the reasons to construct the machine. This will

allow  me  to  highlight  some  of  the  continuities  and  discontinuities  with  previous  calculatory

practices. In Sec. 3 then I will engage with the work of three different ENIAC “users”: Derrick H.

Lehmer (Sec. 3.1), Haskell B. Curry (Sec. 3.2) and John von Neumann (Sec. 3.3).8 In a discussion

5 An important exception here is the work by Franck Varenne, see for instance his (Varenne 2007; Varenne 2009). This
work is rooted in a detailed case-study which focuses on the use of modeling and simulation in the context of plant
biology.  Based  on  that  work,  Varenne  gives  a  kind  of  minimal  characterization  of  a  computer  simulation,  more
particularly, a computer simulation “is minimally  characterized  by a general strategy of symbolization taking the form
of at least one step by step treatment.” (Varenne 2009, p. 11) Based on that more pragmatic understanding, one can
diversify between different types of computer simulation which depend on their particular epistemological function at a
given time. 
6 This statement, Es gibt keine (Computer) Simulation is very much inspired by Friedrich Kittler’s Es gibt keine 
Software (Kittler 1993)
7 This is confirmed by discussions I had on this with Thomas Haigh, Mark Priestley and Maarten Bullynck.
8 These study-cases are very much rooted in previous work I did on ENIAC. See: (Bullynck and De Mol 2010; De Mol,
Carlé, Bullynck 2015)



section I will return to the main claims of this paper and conclude with a critical viewpoint on

“simulation” from the contemporary perspective. 

2. INTRODUCING ENIAC - HISTORICAL SETTING

The ENIAC computer is probably the most famous and, at  the same time, controversial

computer that was ever built. It is often presented as (one of) the first computers9 but it also played

a central role in the important Honeywell, Inc. vs. Sperry Rand Corporation case which invalidated

the ENIAC patent that was filed by Eckert and Mauchly, the two main engineers involved with the

design and construction of the machine.  

The ENIAC machine and other contemporary machines can be contextualized in a broader

history of mechanization of human calculation in applied mathematics and science in general.10

More particularly, it fits into a history of calculatory practices for table making (for instance, the use

of  difference  engines  to  mechanize  the  method  of  finite  differences)  and table  processing  (for

instance, the use of punched cards to mechanize the processing of census data) (Campbell-Kelly et

al  2003;  De Mol  and M.-J.  Durand-Richard  forthcoming).   The  fact  that  the  main  journal  for

reporting on advances in high-speed computing in the late 1940s and early 1950s was the journal

Mathematical  tables  and other  aids  to  Computation,  which  was founded only  in  1943,  is  one

indication of the strong ties between table making and the development of the first computers.11 

Within that context, one had to deal with the issue that human computation was laborious,

time-consuming and very error-prone.12 For instance, Charles Babbage, whose work on and design

of  the  difference  and analytical  engines  is  often  seen  as  a  precursor  of  the  modern  computer,

supposedly and famously exclaimed: `I wish to God these calculations had been executed by steam’

when he and Herschel were checking a manuscript of calculations for astronomical tables and they

realized the rather large number of errors (Swade 2003:158).  It was the increased need for such

tables combined with the growing realization of these issues that results in the development of more

“efficient” methods of calculation. One development concerns “deskilling” methods (Swade 2003:

150) which are introduced to simplify the calculatory process in such a way that the calculations can

be done by people who are of a lower level of education and a lower social class.13 The other is the

development  of mechanical aids which include digital machines (for instance, difference engines or

Aiken’s Mark I) and so-called “analog” devices14 (for instance, the differential analyzer). The latter

9 See (Haigh, Priestley and Rope 2016) for a recent discussion.
10 See for instance (Grier 2005)
11 In fact, when the Eastern Association for Computing Machinery, which became the well-known Association for 
Computing Machinery, was founded MTAC was the preferred journal to publish in until ACM founded its own journal. 
12 Of course, one can say the same of machine computations but scaled by several factors. 
13 For instance, de Prony supposedly hired unemployed hairdressers in his “computation factory” which was set-up for 
the computation of logarithmic and trigonometric table. See (Campbell-Kelly 2003) for more details. 



machines were used to solve differential equations and remained for quite a long time after the

introduction of the digital high-speed computer, a preferred tool of the engineers.15

It was then mostly the issues of speed and error which resulted in the U.S. Army accepting

Mauchly’s  proposal  to  construct  an  electronic  high-speed  machine.  In  the  1930s  there  was  a

growing need for ballistic tables used to aim fire at an enemy target. These tables involved complex

calculations because of the large number of factors that affect the trajectory of a missile like, for

instance, wind velocity, the shell’s weight, diameter and shape and even the rotation of the earth for

long-range  missiles  (Polachek  1997).   It  was  the  Ballistics  Research  Lab  (BRL)  at  Aberdeen

proving ground, Maryland which had, as one of its main tasks, the computation of such ballistic

tables  for  the  U.S.  army.  Aberdeen  Proving  Ground  was  the  first  U.S.  Proving  Ground  and

constituted just a few months after the U.S. had entered World War I. It was here that weapons were

being designed and  tested and so it played a major role in bringing closer mathematics and military

applications. 

In  order  to  compute  firing  tables,  they  relied  on  both  hand calculations  aided  by desk

calculators  and  computations  from  the  differential  analyzers  at  BRL and  the  Moore  school,16

depending on the  type  of  trajectory  to  be  computed.  However,  each  of  these  methods  had its

shortcomings. With the hand calculation method, it took about two 8-hour days to do one trajectory;

the differential analyzer was much faster in that respect, taking about 15 to 30 minutes for one

trajectory (Polachek 1997), but the solutions were not accurate and needed to be `smoothed’ by

additional hand calculations. As Eckert recounts (Eckert 1977: 7):

“You finally get errors in the final result of the order of 1 percent or worse. The ballistics

work that we were doing required errors of something like 10 times better than that. So what

was being done at the time was that things were being run on the analyzer and then they

were being smoothed by hand calculations......being calculated by some interpretive schemes

to try to improve the accuracy required now.”

Moreover,  it  took  on the  average  one  day  for  setting  up  the  DA to  change  from one  type  of

trajectory to another (Polachek 1997, Grier 2005). Given these circumstances, the production speed

14 For a discussion of the history of the use of the pair digital-analog see (Kline forthcoming). As is shown there, not 
everyone agreed with this terminology. Hartree for instance used the terms mathematical instruments and 
calculating machines to make the difference between machines that measure and machines which count and Stibitz 
was more convinced of the pair continuous and digital. Most of the discussions on this are about the use of the word
`analog’. Indeed, one can argue for instance that also a “digital” machine can function as an analogue of some 
digital process for instance. 

15 See (Kline forthcoming). Hashagen made a similar point for the German case in a recent talk at a research 
séminaire in Lille (8 march 2017) titled Analog computing as a failed modernization program in Germany 1930-
1960.

16 There were at the time three differential analyzers in the U.S. The original DA from Vannevar Bush  at the MIT and 
two copies, one at the Moore school of Penn University and one at BRL. The latter two were built at the Moore 
school but financed by the army under the agreement that researchers at BRL could use the DA at the Moore school
at times of war (Grier 2005). 



of the ballistic tables could not catch up with the need for new tables which only increased with the

start of the second world war and so Mauchly’s proposal to the Army to construct a high-speed

computer to compute firing tables was perfectly timed (Polachek 1997: 25):

“In spite of the extensive arrangements the laboratory made [...] the backlog continued to

grow. At one point, more than 100 female students were engaged to carry out firing table

calculations. It was to relieve this bottleneck that John W. Mauchly and J. Presper Eckert [...]

proposed the construction of the ENIAC”

And so, in 1943, the construction of ENIAC was started at the Moore school, Penn University. It

would take until 1946, after the war, that the machine would be completed. Even though it was too

late  to  serve  its  initial  purpose,  it  was  realized  that  it  could  also  be  used  for  a  host  of  other

applications,  including  the  famous  Monte  Carlo  calculations  used  for  the  design  of  nuclear

weapons. According to the list that was made by Barkley Fritz and which summarizes the different

sorts of computation that were done on ENIAC, it was used for over hundred different problems, 17

going from the production of number-theoretical tables to the use in weather prediction problems. 

The machine had, in a sense two “lives” (Neukom 2006). In a first stage, the machine was

highly modular and parallel. In order to `program’ it, one had to rely on a method of rewiring the

machine by reconnecting the different modules and set-up a large number of switches (for instance,

to store numbers or to indicate to a given addition unit whether it should sent out a number or its

complement at a given step in the program).18 By consequence, programming the ENIAC in its

original configuration (Fritz 1994, p. 31):  

“[…] can best be described as analogous to the design and development of a special-purpose

computer out of ENIAC component parts for each new application […] Anyone now doing

research in parallel computing might take a look at ENIAC during this first time period, for

indeed ENIAC was a  parallel  computer  with  all  of  the  problems and opportunities  this

entails.”

Preparing  and  setting-up  a  program  on  the  original  ENIAC  was  a  very  time-consuming  job.

Moreover,  the  “length”  and  complexity  of  a  program,  was  very  much  determined  by  certain

physical boundaries like the number of units available or the number of program cables. Because of

these issues, it was decided that the machine should be permanently rewired once it was moved

from the Moore school to BRL, so that it would become possible to “code” the program by using

symbolic instructions rather than “wire” it.  In that set-up the machine became a kind of stored-

program machine applying concepts from von Neumann’s report on the EDVAC, viz. the design

which is by many considered to be the blueprint of the modern computer.19 20  

17 See for instance (Fritz 1994) to get an idea of the diversity of problems that were prepared for the machine. 
18 See (Bullynck and De Mol ) to understand in more detail how the ENIAC worked in its original set-up.



So why was this  machine so special  as compared to other calculatory devices that were

being used at the time. There are three properties of the ENIAC which are considered to be basic

and where each feature very much depends on the previous one:

1. It was a discrete machine

2. It was capable of so-called conditional branching which is considered as the key feature

required to construct a general-purpose machine besides the capability of the four basic arithmetic

operations (addition, subtraction, multiplication, division)

3. Possibility of coding the machine – this is only true of the rewired ENIAC but see in this

respect footnote 19. 

4. It had electronic high speed.

While properties 1-3 can already be found in other machines, most notably Aiken’s Mark 1 and the

Bell  model  5 machine,  it  is  the combination of 1 to 3 with 4 which is  new and so,  from this

perspective, the most fundamental innovation of ENIAC was its speed. In fact, one can argue that it

is the addition of this last feature to the other three which requires, makes possible and gives rise to

a rethinking of computational methods including those for “controlling” those methods, viz. the

programming. For instance, it is this property which made sensible the idea of internal storage of

instructions inside of the machine (Alt 1972, p. 11).

“I think the thing that we learned with this high speed was that ...you had to have a way to

program ahead of time [...]  On slow computers you can add manually,  you can request

manually the performance of each arithmetic operation. But a fast computer is useless unless

you have some way to program it. ... The idea of a stored program [...] couldn't have come

up before we had the ENIAC because it would have been useless.”

In Sec. 3 further indications are given of the significance of ENIAC’s high speed in combination

with the other three features indicated here. Thus, if one accepts this analysis, the accounts of what

is  the  supposed  impact  of  the  modern  computer  on  science,  should  be  able  to  give  a  good

explanation  of  how  a  `mere’ quantitative  change  has  resulted  in  such  apparently  fundamental

changes in science and its practice. 

3. THREE PEOPLE – THREE PRACTICES

This section, which is the main section of this paper, considers the works and viewpoints of three

people  who  were  involved  with  ENIAC:  Derrick  H.  Lehmer,  Haskell  B.  Curry  and  John von

Neumann. Curry and Lehmer were selected here because they were two of the three members of the

19   See (Haigh, Priestley and Rope 2016) for a historical reconstruction of the conversion process and an analysis of
the capabilities of the rewired ENIAC in relation to the EDVAC design and the programming “method” that  was
designed for it by von Neumann and Goldstine. 
20 Note that the converted ENIAC is, from a certain perspective, just another set-up of the original machine.



so-called computations committee that was assembled by the U.S. Army  in order to test, amongst

others, the newly built ENIAC. Moreover, they allow to counterbalance a bit the “legend” of John

von  Neumann  who  is  probably  the  most  well-known  mathematician  who  was  involved  with

ENIAC. 

The  parallel  discussion  of  aspects  of  each  of  their  works  and viewpoints  permits  to  show the

diversity  of methods that  were developed around this  machine,  thus  contextualizing the Monte

Carlo “simulations”. 

3.1. Derrick H. Lehmer – number theory

3.1.1. Background and involvement with ENIAC

Derrick H. Lehmer was first of all a number theorist. He was very much shaped by his father

who was also a number theorist and convinced “that mathematics, and especially number theory, is

an experimental science” (Lehmer 1969, p. 3). Lehmer was very much aware of the possibilities of

mechanical aids to this kind of number theory as becomes clear from his involvement in the journal

Mathematical Tables and other aids to Computation and his construction of several “prime sieves”

in the 1920s and 30s, including a photoelectronic sieve and one built from bicycle wheels.21

During World War II, Lehmer got involved with the war effort by contributing to research of

the Applied Mathematics Panel (AMP). It was established by the end of 1942, when the National

Defense  Research  Committee  (founded in  1940)  was  reorganized  going  from five  divisions  to

nineteen. It was directed by Warren Weaver. Its purpose was `to bring mathematicians as a group

more effectively into the work being carried on by scientists in support of the nation's war effort.’

(Bush, Conant, Weaver 1946, p. vii). The AMP had contracts with different universities  who could

work on specific problem classes. The University of California where Lehmer was working at the

time, was responsible for (Bush, Conant, Weaver 1946: 97):

“Statistical  analysis  applied to  bombing research concerned with problems of land mine

clearance, the theory of pattern bombing and the bombing of maneuvering ships, and the

theory of bomb damage.”

One set of problems that was studied by the group in California was related to  pattern bombing,

which  concerns `the  almost  simultaneous  release  of  all  the  bombs  carried  by  a  formation  of

aircraft,  thus giving rise to  a  pattern of bombs affected,  as  a  unit,  by an aiming error.’ (Bush,

Conant,  Weaver  1946,  p.  46)   and  it  was  with  this  problem that  Lehmer  got  involved.  More

particularly, there is, first of all, the report (Eudey 1944), Cooperative study in area bombing, and,

secondly,  and  more  interesting  here,  the  report  (Lehmer  1945)  describing  a  photo-electric

21 See (Bullynck 2015) for a discussion of Lehmer’s different sieves.



instrument for mechanizing a specific method `to estimate the probability of at least one hit or,

alternatively,  the  expected  proportion  of  hits,  in  formation  attacks  on  irregular  target  areas.’

Interestingly, and as will be argued in more detail elsewhere,22 this method, which is called a model

experiment, can be understood as a variant of the Monte Carlo method before it had been used and

developed in the ENIAC context and is very close to a notion of simulation as a means to solve

problems in a non-analytical manner. More particularly, a model experiment is `used as a means to

solve  certain  bombing  problems  which  would  proceed  tediously  if  approached  by  numerical

integration’ (Bush, Conant, Weaver 1946b, p. 56) One example (from 1944) from the review report

(Bush, Conant, Weaver 1946) in which a model experiment was applied was the problem (Bush,

Conant, Weaver 1946, p. 48):

“to determine the number of attacks […] needed to give a probability of at least  P that at

least the proportion F of the target would be covered at least n times”

The method was the use of a model experiment:

“in which a series of synthetic random-bombing operations were performed, with enough

replications to permit the estimation of probability levels from order statistics. The data, so

accumulated, was then used as the basis for an empirical function whose general properties

were suggested by theoretical considerations.”

It is exactly in this kind of context that one also finds reference to a notion of simulation. So, for

instance, in the introduction to Chapter 7 Statistical studies in mine clearance, of the same summary

report one reads (Bush, Conant, Weaver 1946b, p. 79):

Most  of  the  work  in  the  second and  third  studies  was  done by experimental  statistical

methods in which model experiments simulating the conditions of the problem [m.i.] were

repeated  a  number  of  times.  The  theory  underlying  the  two  studies  can  be  formulated

analytically in terms of appropriate mathematical formulas but the computation that would

have  been  involved  in  the  mathematical  approach  would  have  been  prohibitive.  The

experimental methods developed are fairly simple but quite effective and the routine, once it

is set  up, can be made to operate at  a clerical level.  There are undoubtedly many other

statistical problems of this type in military research which can be more effectively handled

for practical purposes by experimental methods than by analytical methods.[m.i.]

Moreover, it seems that this notion of `simulation’ refers directly to the random events used in the

model experiments as is clear here  (Bush, Conant, Weaver 1946b, p. 79):

A second statistical study dealt with an investigation of the extent of clearance of mines to

be expected by using against beach minefields 120-rocket barrages launched by a device

22 I am preparing a paper together with Maarten Bullynck with the provisional title: Monte Carlo on the beach: model
experiments and throwdown studies before ENIAC in which we consider variants of the Monte Carlo method which
clearly already had a certain tradition before their use in the ENIAC context. 



known as  the  WOOFUS.  This  study  was  carried  out  by  means  of  a  miniature  random

number  experiment,  in  which  the  radius  of  clearance  of  a  single  rocket  and  the  errors

involved in delivering the 120 rockets in a barrage were simulated.

Fig. 1 gives a schematic representation of Lehmer’s instrument called the photoelectric analyzer

and, most probably, inspired by Lehmer’s photo-electronic prime sieve.23 

Fig. 1: Graphical representation of Lehmer’s photo-electronic bombing analyser. From (Bush, Conant, Weaver 1946). 

Its basic principle was to (repetitively) project a synthetic bomb pattern on a ground glass after

passing through a diaphragm stop cut out in the form of the target (the so-called “target screen” in

Fig. 1) so that the ground glass screen would be illuminated only by that part of the bomb pattern

which intersected the target. The light from the screen was focused on a photoelectric cell which

(Bush, Conant, Weaver 1946, p. 57):

“was instrumented so as (1) to add the effect of successive images of bomb patterns, or (2)

to count the cases which were not blank. A movie projector and a film with 1,500 frames

were used. Each frame carried a picture of the bomb pattern with its center displayed to

represent a random deviate from a Gaussian distribution.”

Apparently, after the war, plans were made to construct a number of these instruments at Wright

Field but I could not verify in how far these devices were actually used. 

In 1945 then a computations committee was assembled at the Ballistics Research Lab at

Aberdeen intended to prepare for “utilizing the [ENIAC] machine after its completion” (Alt 1972:

693). Given that Lehmer was already well-versed in the development and use of calculatory devices

and had done some war work as a member of the lab in California, his being a member of that

committee is less surprising as one think at first. 

23 See (Bullynck 2015) for more details about that sieve.



3.1.2. Developing mathematics on the ENIAC: a number-theoretical problem

So what  did  Lehmer  do to  test  ENIAC? Most  important  from that  perspective  is  the  number-

theoretical computation that he prepared and set-up over a labour day weekend in 1946 with his

wife  Emma  Lehmer  who  was  also  a  number  theorist.24 This  concerned  the  computation  of

exponents e of 2 mod p, viz. the smallest value of e such that 2e ≡ 1 mod p. It was a known fact that

Fermat's little theorem could be used as a primality test. If for a given number b, 2b ≡ 2 mod b than

b is  with  high  probability  a  prime number.  Unfortunately,  an  infinite  set  of  exceptions  to  this

primality test exists. A table of exponents then can be used to compute such exceptions and the

ENIAC computation was used to correct and extend existing tables of exponents. 

Given the military context in which ENIAC was built and used, one could consider this problem as

quite obscure or irrelevant. However, as a test  problem it was quite important and this for two

reasons. First of all, and as was pointed out by Alt (Alt 1972: 694):

“The running time of the problem occupied almost the entire weekend, around the clock,

without a single interruption or malfunction.  It  was the most  stringent  performance test

applied up to that time, and would be an impressive one even today.[m.i.]”

Secondly,  given  that  it  was  the  first  number-theoretical  computation  that  was  ever  ran  on  an

electronic machine, it was important in that it showed that machines like ENIAC might also be

useful for scientific purposes that were unrelated to the war effort and so it could be used as an

example to convince scientists of the usefulness of high-speed computation for their work  (Alt

2006: 40):

“I think what’s particularly interesting about the number theory problem they ran was that

this was a difficult enough problem that it attracted the attention of some mathematicians

who could say,  yes,  an electronic computer could actually  do an interesting problem in

number theory  [m.i.] – something as sophisticated in number theory – and produce useful

results. There were many people who speculated about this – von Neumann among them –

but to actually do it, to demonstrate it, was, I think, important to the post-war reputation of

electronic computers among mathematicians.”

Clearly, while the problem itself already had a tradition within number theory, the introduction of a

high-speed and parallel machine affected the methods for tackling it. First of all, and in connection

to Lehmer’s previous work, the machine allowed the implementation of a truly parallel prime sieve.

Secondly, one of the main subroutines that were set-up on the machine and which was called the

exponent routine was quite different from the human methods one would normally use. Indeed, and

as Lehmer explains, the ENIAC “was instructed to take an ``idiot'' approach'' (Lehmer 1974: 5). To

start, the machine needed a table of prime numbers. Of course, in a context where one does not have

24 A detailed study of that work can be found in (Bullynck and De Mol 2010).



the  high-speed,  the  obvious  thing  to  do  is  to  provide  that  table  to  the  machine  during  the

computation by means of punched cards. However, since this is a mechanical process, this would

significantly slow down the computational process. Hence, it was decided not to use an existing

prime table but to let the machine compute its own next value of p as it was needed by using the

mentioned prime sieve. The next step was to calculate the powers of 2 reduced modulo p, with p

prime.   The  “idiot  aproach”  taken  by  ENIAC resulted  in  a  routine  which  required  `only  one

addition, subtraction, and discrimination at a time cost, practically independent of p, of about 2

seconds per prime. This is less time than it takes to copy down the value of p and in those days this

was sensational.’ (Lehmer 1974: 5). Thus, with the introduction of high-speed computation, it was

realized that the usual human and slow methods needed to be replaced by other methods which

might  be  less  ingenuous  and  more  brute  force  but  also  more  efficient.  Hartree,  another

mathematician, who was already well-versed in using machines to assist in computation when he

became involved with ENIAC, phrased this as follows (Hartree 1949): 

“[I]n programming a problem for  the machine,  it  is  necessary to  take a “machine’s-eye

view” of the operating instructions, that is to look at them from the point of view of the

machine which can only follow them literally, without introducing anything not expressed

explicitly by them, and try to foresee all the unexpected things that might occur in the course

of the calculation, and to provide the machine with the means of identifying each one and

with appropriate operating instructions in each case. And this is not so easy as it sounds; it is

quite  difficult  to  put  oneself  in  the  position  of  doing  without  any  of  the  hints  which

intelligence and experience would suggest to a human computer in such situations.”

It was also this approach which was used in the computation of another problem that was suggested

by Lehmer to George Reitwiesner who was at Aberdeen Proving Ground and which became known

as “slow Moses”. This was the computation of the so-called Fermat quotient. The program was

special because it was probably the first instance of  “an interruped idle time modus operandi”

(Lehmer 1974: 5). Apparently, Reitwiesner used it to prove to the engineers that ENIAC was also

able to run for longer periods of time by running this problem every night for a certain period of

time when it would otherwise stand idle (Homé Mc Allister Reitwiesner in (Bergin 2000: 44)).

Regretfully,  slow Moses had deserved its name because it was really slow due to the rewiring of

ENIAC into a slower serial machine (Lehmer 1974: 5).25   

Another interesting aspect of the exponent computation is that it required the full machine

and even more. As is recounted by Jean Bartik, one of the six female operators of the original

ENIAC (Bartik 1973):

25 Indeed, from Lehmer’s perspective changing ENIAC from a parallel machine to a serial one was not a good choice 
and so, to him, von Neumann “spoiled” the ENIAC (Lehmer 1980).



“Lehmer’s little problems, they were always too big for it. So consequently, you always had

to be changing it or to think of something new and innovative in order to get a problem or

ways that you could break the problem down into smaller portions.”

Thus, one could say that in the case of the exponent problem, the machine “implements” or “is” the

method and so both the method and machine are reciprocally structured and shaped.26 

It is not completely clear what other things Lehmer did in the ENIAC context though it is

quite certain that he did assist in the preparation and actual set-up of a number of other problems

that were ran on ENIAC as is clear, for instance, from the acknowledgements in (Hartree 1946) and

(Grubbs 1950). Thus, at least in Lehmer’s case, there is no “radical difference” between practices of

number theory, machine-building and problems of applied mathematics. In fact, it was the need for

mechanization in both number theory and applied mathematics which made it quite straightforward

to make the switch from one to the other practice via the machine-building. This fits into a longer

historical tradition where mechanization, computation and (applied) mathematics go hand-in-hand

(See Sec. 2). 

3.1.3. A number-theorist engaging with ENIAC – reflections

But while Lehmer’s use of ENIAC is, from a certain perspective,  a continuation of an existing

tradition, it is also a culmination of that tradition: Lehmer was very much impressed by the potential

of high-speed digital computation for his own field and after his meeting with the ENIAC machine

he would write and talk on several occasions about the usefulness and impact of electronic high-

speed computers on science and, more specifically, mathematics. 

Lehmer clearly had specific views on number theory and mathematics at large. Indeed, as

explained in Sec. 3.1.1.,  he had a view on number theory as an experimental science which he

contrasted  with  the  more  traditional  and  popular  viewpoint,  or,  in  Lehmer’s  words  `school  of

thought’ (Lehmer 1966: 745): 

“The most popular school now-a-days favors the extension of existing methods of proof to

more general situations. This procedure tends to weaken hypothesis rather than to strengthen

conclusions.  It  favors  the  proliferation  of  existence  theorems  and  is  psychologically

comforting in that one is less likely to run across theorems one cannot prove. Under this

regime mathematics would become an expanding universe of generality  and abstraction,

spreading out over a multi-dimensional featureless landscape in which every stone becomes

a nugget by definition. Fortunately, there is a second school of thought. This school favors

26 This is less the case today where one no longer has access to the machine in such direct manner though one could

argue that it is now the “program” and so, by extension, the software “implementing” the method which is reciprocally

shaped and structured by its applications and uses.  



exploration [m.i.] as a means of discovery. [B]y more or less elaborate expeditions into the

dark mathematical world  one sometimes glimpses outlines of what appear to be mountains

and one tries to beat a new path in their direction. [N]ew methods, not old ones are needed,

but are wanting. Besides the frequent lack of success, the exploration procedure has other

difficulties. One of these is distraction. One can find a small world of its own under every

overturned stone.”

Clearly, Lehmer’s understanding of “experiment” cannot simply be equated to “experiments” as in,

say,  physics.27 For one thing,  the “reality” of  a  physical  experiment  is  quite  different  from the

“reality” of the mathematical experiment, especially the number-theoretical one, and so the idea that

the computer has come to “stand […] for nature itself” (Galison 2011: 157) or constituted “an

alternative reality” can and should be understood differently in the case of number theory. Indeed,

here the computer,  as a digital  device which counts,  has come to “stand” for the `universe’ of

numbers.

In  Lehmer’s  view then,  the  computer  is  just  another  tool  which  requires,  first  of  all,  a

rethinking of existing methods and, secondly, makes accessible a new range of problems which he

calls  `discrete-variable  problems’.28 For  instance,  in  a  paper  written  for  a  book  volume  titled

Modern mathematics for the engineer,29 the discrete-variable or digital machines are contrasted with

analog machines, where these analog machines are assumed to be more familiar to the engineer and

the mathematician (Lehmer 1956: 481).30 The main focus of that paper is to show to the engineers

for both types of machines what kind of problems they can be used for and how one needs to

change methods  when switching from analog to  digital  devices.  Indeed,  as  Lehmer  points  out

(Lehmer 1956: 485-486): 

From the point of view of the discrete-variable device, things need to be counted rather than

measured; mathematics is not geometry but arithmetic; the universe is quantized and this

includes mathematics. Integrals are but sums, and derivatives are but difference quotients;

functions are discontinuous everywhere; limits, infinities and infinitesimals do not really

exist […] Thus […] we seem to go back to Pythagoras. [...] The methodological step-by-step

reiteration […] is to be contrasted with the modus operandi of the analogue machine.” 

In other words,  if  the computer constitutes an alternate reality it  is a discrete reality and not a

continuous one which is a problem one needs to deal with as a physician but not as a number

theorist.31 

27 For a more detailed discussion of Lehmer’s understanding of experiment, see for instance (De Mol 2015).
28 Besides Lehmer  also Eckert used the notion of discrete-variable (Kline forthcoming). 
29 I thank Arianna Borrelli for having pointed me at this source. 
30 See in this relation also footnote 14.
31 Of course, Lehmer was not the only one nor the first to describe the difference between so-called `analog’ and 

digital machines in terms of measuring vs. counting devices. See eg (Stibitz 1945; von Neumann 1958: 3 and 6)



Interestingly and in the same paper, Lehmer does use the word `simulation’ but it is not used

with reference to digital machines but with reference to analog devices. This is not surprising: the

very idea behind calling the “continuous” machines analog machines was exactly because they were

understood  as  `analoguous’  to  what  they  were  supposed  to  `simulate’  namely,  continuous

phenomena. In fact, the current OED definition of `simulation’, viz.:

“The technique of imitating the behaviour of some situation or process (whether economic,

military, mechanical, etc.) by means of a suitably  analogous [m.i.] situation or apparatus,

esp. for the purpose of study or personnel training.”

seems closer in spirit to a notion of analog machines than to a notion of a digital machine as used by

many in the late 1940s and early 1950s. Indeed, from the physical and engineering perspective, the

transition from continuous to discrete-variable machines, at least at the time, was in fact a decrease

in the level of analogy between the model or system being “simulated” as compared to so-called

analog or continuous machines which where still more directly linked to the continuous world of

physics.

3.2. Curry – logic and the automation of firing table computations

3.1.1. Background and involvement with ENIAC

Haskell B. Curry is today mostly known as one of the founders of combinatorial logic and

mathematical logic in the U.S. Only few are aware of the fact that he became also involved in the

second World War during which time he worked not on problems of logic but on ballistic problems.

It was this involvement which resulted in him becoming one of the members of the Computations

Committee for  testing  the  ENIAC  machine.  So  how  did  a  logician  become  interested  in  and

involved with ballistics? The answer to this needs to be sought in Curry’s biography.32

Curry was born on September 12, 1900 at Millis Massachusetts. When he left high school in

1916, he entered Harvard University with the intention to go into medicine. When the U.S. entered

World War I however, he enlisted in the Army where he became a member of the Student Army

Training  Corps  in  October  1918.  He  believed  that  he  could  be  more  useful  for  the  war  as  a

mathematicians so decided to switch careers with the idea of going into artillery (Seldin 2005).

Curry was thus part of a small but growing community of people in the U.S. who realized the

potentials of mathematics for the military.33 Perhaps this went via George D. Birkhoff. He was at

Harvard at the time and one of those who realized already during World War I the potentials of

mathematics  for  the  military  (Archibald  et  al  2014).  It  would  also  be  Birkhoff  who,  besides

mathematicians  like  Veblen,  Rees  and  Moulton,  played  a  leading  role  in  bringing  closer  U.S.

mathematics and the military. 

32 Most of the biographical information on Curry in this section is from (Seldin 2005). 
33 See (Archibald et al 2014) for a recent historical study of the effect of World War I on U.S. Mathematics. 



When the war had ended, Curry left the Army but continued to study mathematics and got

his A.B. degree in 1920. After that, he went to MIT to become an electrical engineer working half-

time at the General Electric Company but then decided that he was more interested in science than

engineering and so switched to physics in 1922, returning to Harvard. He got his A.M. in physics

from Harvard in 1924 but again his interests had shifted. He wanted to return to mathematics and so

moved back to studying mathematics at Harvard until 1927. It was during that time that he became

more and more interested in logic and decided to work on that, against the advice of several faculty

members  at  Harvard.  At  that  time,  mathematical  logic  wasn’t  very well-developed in the  U.S.

(Davis 1995) and so it certainly wasn’t the best choice career-wise. In fact, Curry was supposed to

write a dissertation on differential equations under Birkhoff. He became, instead, fascinated by the

substitution operation for propositional logic as described in Principia Mathematica by Russel and

Whitehead  which  he  considered  to  be  too  complicated.  His  approach then  was  to  analyze  the

substitution  operation  down to  its  simplest  possible  elements.  The  result  of  that  was  a  set  of

operators which he called combinators.34  This approach, to reduce something to its most elementary

form, would become a characteristic of part of Curry’s way of working and, as we will see, would

be one of the main methods of his theory of program composition that he developed in the wake of

his meeting with ENIAC. 

When he brought this work to, amongst others, Birkhoff and Wiener (then at MIT),  the

reaction was a positive one and so he changed topics for his dissertation. However, since there was

no one at Harvard who could supervise a dissertation on logic, he moved to Princeton and then to

Göttingen  where  he  finished  his  dissertation  under  the  supervision  of  David  Hilbert  and  Paul

Bernays. Upon his return from Göttingen he became an assistant professor at Penn State University

where he would stay until his retirement in 1966. 

However, switching to logic, which was certainly not the most applied field of mathematics

at the time, did not stop Curry from investing into the military as a mathematician. And so when the

second world war started he became a member of the the joint War Preparedness Committee of the

American Mathematical  Society and the  Mathematical  Association of  American and which was

chaired by Marston Morse, a student of Birkhoff who had been in the Ambulance service and was

sent  to France at  the end of the first  World War.  In a  paper titled  Mathematical Teaching and

National Defense, which resulted from the committee’s deliberations on `all aspects of the relation

between  mathematics  and  defense’ (Curry  1942:  337),  it  becomes  clear  how  strong  Curry’s

convictions actually were (Curry 1942: 337):

34 Some time later, Curry found out that he was not the first to have developed this type of operations to analyze 
substitution. Indeed, Schönfinkel had already develop several of the combinators in his paper Uber die Bausteine 
der mathematischen Logik which was published in 1924 already. By the time however Curry found out, 
Schönfinkel was in a mental hospital. The story of Schönfinkel is very sad: he died in poverty in Russia in 1942. 



Those who allege that algebra, for instance, has no practical use may be surprised to learn

that  modern war is largely mathematical in character  [m.i.]. The firing of projectiles, the

design of airplanes, the construction of secret codes, and countless other activities require

large amounts of mathematics which is sometimes highly technical. 

When the U.S. entered the War, Curry left university life to work and serve as a mathematician at

Frankford Arsenal. This was one of six U.S. Army ammunition facilities. Each of these worked on

one or more of the major phases of ordnance. The one in Frankford (Hoff 1943: 18):

“makes studies on the manifacture of metal components for shells and bombs, and designs

and develops methods for production of small arms ammunition.”

Once a specific weapon was designed and a prototype produced, it was sent to Aberdeen Proving

Ground where it was tested. It is not completely clear what Curry did during his time at Frankford.

According to (Seldin 2012) he worked mostly `on the mathematics of aiming a projectile at  a

moving target, the so-called fire control problem.’ He also published two papers while at Frankford

Arsenal (Curry 1943; Curry 1944).35 Neither of these papers contains new methods but are instead

descriptions of existing mathematical techniques `with emphasis on its practical aspects’ (Curry

1944: 259) in order to show their potential for the  kind of problems Curry was confronted with at

Frankford Arsenal. So, for instance, the first paper considers the  so-called Heaviside operational

calculus which was, apparently, `no longer of any mathematical interest’ (Curry 1943: 366) and

been `completely replaced [in engineering practices] by the theory of Laplace or Fourier transform.’

(Curry 1943: 366). However, it could still be very useful for certain artillery problems, as Curry

continues: 

“I know from the experience of the last six months that there are engineers who find the

theory  of  integral  transforms  involves  difficulties  which  they  would  prefer  to  avoid.

Moreover  there are  serious  engineering problems,  viz.,  those having to do with discrete

mechanisms or networks, for which the difficulties of the integral transforms appear to be

irrelevant. There is, consequently, some interest in a theory of the Heaviside calculus of a

more elementary character.”

After  his  short  stay  at  Frankford  Arsenal,  Curry  became  a  member  of  the  Applied  Physics

Laboratory at John Hopkins where he stayed until May 1945 to move to BRL at Aberdeen proving

Ground where he stayed until September, 1946 and made it to chief of the Theory section of the

Computing Laboratory and then chief of the Computing Laboratory. It was, of course, during this

time that he became involved with ENIAC as a member of the computations committee. Based on

this experience he would become consultant in computing methods to the U.S. Naval Ordnance

from June 1, 1948 till June 30, 1949 (Seldin 2005). 

35 One of these papers was published in the the newly founded Quarterly for applied mathematics. That journal was 
founded in 1943 and indicates the increased interest in the U.S. for applied mathematics. 



3.2.2. Developing mathematics on the ENIAC: interpolation problems

While at Aberdeen, Curry worked  mostly on problems related to computing firing tables by the

ENIAC. I have found four problems Curry has worked on while at Aberdeen and in direct relation

to ENIAC:

1) numerical method for “smoothing” drag functions

2) inverse interpolation problems

3) fourth order interpolation

4) the computation of the first 2,000 digits of e

I will focus here only on 1) and 2). For a short discussion of 4), see (Seldin 2012).36 A description of

the work on 3) can be found in the report (Curry and Lotkin 1946). 

Numerical  method  for  “smoothing”  drag  functions  Curry’s  work  on  problem  1)  is  in  fact  a

modification of the spline interpolation method which was introduced by Isaac Jacob Schoenberg

also in the ENIAC context.  Schoenberg was a Jewish mathematician who had moved to the U.S. in

the early 1930s and also had a position at the University of Penssylvania by the time the second

World War started (Schoenberg 1988). In August 1943 he also joined the BRL at Aberdeen Proving

grounds. It  was Leo Zippin, yet another mathematician who had joined into the war effort and

served as a Corporal at BRL from 1942 till 1945, who arranged for Schoenberg to go to BRL for the

duration of the war where he was given a very specific task (Schoenberg 1988):

The morning in August 1943 of my reporting for duty,  Major A. A. Bennett,  of Brown

University, then Chief of the Computing Branch of the BRL, told me what my particular

problem  was  to  be:  Trajectories  of  projectiles  were  until  then  computed  with  desk

calculators  by hand.  Into  these  computations  entered  tables  of  the  drag-functions  of  air

resistance, about 24 of them, which were obtained empirically by firings of various types of

projectiles. As the step of integration used in these trajectory computations was rather large

and the methods of numerical integrations fairly complicated, it did not much matter that the

4-place drag-function tables were rather rough. In performing these computations on the

36 In relation to 3) it is interesting to point out that the first thoughts on this by Curry date back to before the ENIAC

was finished. More specifically, there is one note from Curry in the Curry papers dated July 15, 1945 (Seldin 2012). The

actual  “written” program was finished by January 1946, still  before the official unveiling of ENIAC. It  is unclear

whether this specific problem was ever ran on ENIAC but apparently Curry told Seldin that no one else at ENIAC was

convinced that it could be of any interest at the time. However, some years later, von Neumann became interested in

computing the first 2,000 digits of both e  and pi   most probably because of the interest in finding good methods for

generating random digits (See Sec. 3.3.2.). The (then rewired) ENIAC was effectively used to compute the digits of

both numbers. See  (De Mol 2008) for more details. 



ENIAC, which was very fast, a much simpler integration method of very small step could be

used.  In these methods, the accumulation of the round-off errors was unacceptable due to

the  rough  drag-function  tables;  they  needed  to  be  smoothed by  being  approximated  by

analytic functions [m.i.] To do this was my problem.

In  other  words,  Schoenberg  was  asked  to  develop  a  numerical  method  which  would  be  more

adapted to the particularities of a high-speed digital computer already in 1943 when it had only just

been decided that the Army would finance the construction of that machine, viz. a method which

takes advantage of the digital and high-speed of the machine and so makes extensive use of iteration

which,  as  a  side-effect,  accumulates  round-off  errors  because  of  the  “roughness”  of  the  drag

functions.37 The method which was introduced by Schoenberg is known as (an instance of) spline

interpolation.  As Schoenberg  explains  (Schoenberg  1946),  this  method is  used  when the  more

common interpolation methods (using polynomials) cannot give enough accuracy. This is especially

the case when the function  F(x) is an approximation based on a set of empirical data  yn as in the

case  of  the  drag  functions  (instead  of  a  known analytical  function  F(x)).  The  basic  idea  is  to

approximate a function by piecewise polynomial functions, viz. instead of having one polynomial,

the approximation is done by polynomial pieces of a certain degree n which join at certain points

known as knots. Schoenberg’s original method used equidistant knots and it was then Curry `who

recognized the possibility  of  defining  splines  with  arbitrary non-equidistant  knots’ (Schoenberg

1988: 5) This work was published as (Curry and Schoenberg 1947; Curry Schoenberg 1966). 

Inverse interpolation problems38 The second problem from the ENIAC context on which Curry

worked is the so-called problem of inverse interpolation (Curry and Wyatt 1946)39:

“The problem of inverse interpolation may be stated as follows. Suppose we have a table

giving values of a function x(t) [...] for equally spaced values of the argument t. It is required

to tabulate t  for equally spaced values of x. This problem is important in the calculation of

firing tables. Suppose the trajectory calculations have given us the coordinates (x,y) of the

projectile as functions of t (time) and φ (angle of departure). For the tables we want t and φ

as functions of x and y; indeed we wish to determine φ so as to hit a target whose position

(x,y) is known, and t is needed for the fuze setting or other purposes.” 

37 Also von Neumann would later become interested in the study of round-off errors and the development of 
numerical methods for controlling them but it is clear that the need for such methods was realized very soon and 
before von Neumann for involved with ENIAC. See Sec. 3.3.2.

38 See (De Mol, Carlé, Bullynck 2015) for a detailed study of Curry’s work on the inverse interpolation problem and 
how it affected his later work on the composition of programs. Parts of this paragraph overlap with conclusions 
from that paper. 

39 Willa Wyatt was one of several female mathematicians that was hired by the BRL and then sent to the Moore 
school to work on the calculation of ballistic trajectories. She was one of the supervisors of the differential analyzer 
and the computer sections at the Moore school and so was well-versed both in ballistic calculations and computing 
machinery (Fritz 1996) 



In other words, the problem of inverse interpolation concerns the computation of initial settings of a

bombing device  such as  the fuse settings  or  the  angle  of  departure.  As was the case with the

smoothing problem, also here the numerical  methods are  very much adapted or  shaped by the

limitations and possibilities of the high-speed ENIAC machine. To start with, the numerical method

used is based on iteration `which is eminently suitable for ENIAC’ (Curry and Wyatt: 6). But the

choice for an iterative method for the main interpolation is not just rooted in the high-speed of

ENIAC but  also in  the possibility  to  reuse certain programs `independent  of  the choice of  the

[interpolation]  formula  for  f(u)’  (Curry  and  Wyatt  1946:  6)  where  f(u)  is  the  interpolatory

approximation of the function x(t)  mentioned above.  Indeed,  the report  by Curry and Wyatt  is

intended to provide a  general framework for problems of inverse interpolation and so (Curry and

Wyatt 1946: 6): 

“A basic scheme of programming is set up in detail in such a way that it can be readily

modified to suit circumstances. Some modifications are also programmed in somewhat less

details than the basic scheme, and general principles regarding modifications are discussed.

The special requirements of firing table calculations […] are not gone into here.” 

In  other  words,  the  methods  of  tackling  the  problem  of  inverse  interpolation  is  very  much

determined  not  just  by  the  high-speed  of  the  computation  but  its  combination  with  ENIAC’s

`programmability’ (See Sec. 2). In fact, we can go a step further and say that while the report by

Curry and Wyatt is clearly focused on the inverse interpolation problem, this is studied not for its

own sake but `with reference to the programming on the ENIAC as a problem in its own right’.

As explained in Sec. 2, for the original ENIAC machine, setting up a problem was quite

laborious and so many of the choices and reflections made in the Curry-Wyatt report are motivated

by the need for simplifying the programming process. One clear example of that is the choice for a

numerical method which is not the most efficient in terms of convergence -- which was less of a

problem given the high-speed of the machine – but results in a simpler program set-up, or, to put it

in  the  words  of  Curry  and  Wyatt:  `For  the  ENIAC  [...]  extremely  rapid  convergence  is  not

necessary.  [...]  A far  more  important  consideration  than speed of  convergence  is  simplicity  of

programming.’ (Curry  and  Wyatt  1946:  14).  Perhaps  more  interesting  from  the  contemporary

perspective is the development of a more systematic and structural approach to programming in the

report, providing a hierarchical structure to programs which differentiates between:40

1) program elements

2) program sequences or stages

3) processes

4) program

40 It seems that this structurization is due to Curry. Indeed, in his notes on the e calculation, which predate the Curry-
Wyatt report, he already identifies this kind of hierarchical structure. 



The more central elements here are the `stages’ or `program sequences’ of a process: 

“The stages can be programmed as independent units, with a uniform notation as to program

lines, and then put together”

Indeed, it is the structurization of processes into stages which allows for the modifications needed to

do different types of inverse interpolation simply by reordering or reusing the stages as well as to

make possible the use of a particular stage at different places in a program. The latter method is

today known as a closed subroutine and is usually considered to be a fundamental feature only of

stored-program machines. 

As is clear, even though Curry was involved with ENIAC and BRL only for a short time, he

was  quite  able  to  bring  together  the  needs  and  limitations  of  the  ENIAC  machine  with  his

experience  in  applied  mathematics  and  his  viewpoint  as  a  logician  who  seeks  to  simplify

complicated operations by analyzing them into simpler elements. This bringing together of these

three aspects was driven not so much by a desire to solve one specific calculatory problem (e.g.  one

particular class of firing tables), but instead to develop more general numerical and programming

methods that fit the machine to give a higher degree of efficiency (Curry and Wyatt 1946): 

“[The] basic scheme was not designed specifically for a particular problem, but as a basis

from which modifications could be made for various such problems.”

Curry would pursue this  path by developing a  so-called  theory  of  program composition which

aimed at automating the process of subroutining and so can and was understood, at least by some,

as an anticipation of much of the work that was done much later on compilers and higher-level

programming in the later 1950s. 

3.2.3. A logician engaging with ENIAC – reflections

What is logic and, more specifically, formal logic about? In his first published paper in logic, Curry

summarizes this as follows (Curry 1928: 363):

“the essential purpose of mathematical logic is the construction of an abstract (or strictly

formalized) theory, such that when its fundamental notions are properly interpreted, there

ensues an analysis of those universal principles in accordance with which valid thinking

goes on. The term analysis here means that a certain rather complicated body of knowledge

is exhibited as deriveable from a much simpler body assumed at the beginning. Evidently

the simpler this initial knowledge, and the more explicitly and carefully it is set forth, the

more profound and satisfactory is the analysis concerned.”

In other words, formal logic is the bringing together of what Curry considers to be the main purpose

of logic, viz. `the analysis and criticism of thought’ (Curry 1928: 363) with the formal methods of



mathematics.  Or,  put  differently,  it  is  about  modeling  (valid)  human  thought  through

formalization.41 Moreover,  it  is  Curry’s  specific  approach  to  perform  such  analysis  through

simplification, viz. (Curry 1928: 367-368):

“The rules [of any abstract theory] form the port of entry of intelligence; and since nothing

can be done without them, they represent the atoms of thought […] into which the reasoning

can be decomposed. It follows that in constructing such a theory it is not sufficient merely to

reduce the postulates and primitive ideas to their lowest terms; it is even more important to

so chose the rules that they involve […] only the simplest actions of the human mind.”

It is exactly this approach of simplification which he then applies to the `highly complex’ rule of

substitution  resulting  in  Curry’s  theory  of  combinators  (which  is  closely  related  to  that  of

Schönfinkel, see footnote 32). It serves the purpose of understanding `processes by means of which

entities may be combined to get new entities’ and so we see that Curry’s `model’ for substitution is

intended  to  capture  (rather  than  simulate)  a  dynamical  process.  The  model  however  has  the

potential of being a dynamical one (see p. 2) if we start to effectively “apply” the combinatory rules

to `generate’ a system of assertions. 

This is confirmed by Curry’s use of his work on combinators in his attack on the problem of

program composition  and which is a continuation of the work done on ENIAC but for the IAS

machine which,  basically,  followed von Neumann’s EDVAC design.42 The basic  idea is  that  of

automating or, at least, mechanizing, that part of the “coding” process which concerns the tying

together and combining of several smaller programs into one and so, amongst others, allow for the

automation of access to and return from (closed) subroutines and the automation of loops. In short,

the aim is to develop, what we would today call, a compiler for programs and to automate part of

the programming. Indeed, as was later explained by George W. Patterson of Burroughs Company in

a review of a short paper by Curry: ‘automatic programming is anticipated by the author’ (Patterson

1957: p. 103). For instance, in an EDVAC-style machine, if some existing subroutine needs to be

used at some point in a program, the coder needs to recalculate addresses in order to insert it into

the  program at  the  proper  place.  This  is  a  time-consuming  job  and  so  having   mechanizable

procedures available for doing that was one major step forward. 

Curry’s attack on the problem was two-stepped:

1)  the  analysis  of  programs into  a  set  of  basic  programs.  These  were  intended  as  the

ultimate  constituents  to  be  used  as  the  basic  building  blocks  for  creating  more  complicated

programs.  Curry  provided  a  set  of  26  basic  programs,  which  were  a  systematization  of  von

Neumann’s  order  code  for  EDVAC,  and  different  mechanical  procedures  for  analyzing  more

41 The notion of abstract theory and so the formalization has quite a specific meaning in Curry’s understanding but 
this is outside the scope of this paper. 

42 A detailed study of Curry’s work on program composition can be found in (De Mol, Carlé and Bullynck: 2015). 



complicated problems into a set of basic programs. Such `analyser’ was completely described for

arithmetical programs but only partially for programs that also involved discrimination and loops.

2) the (re)synthesis of basic programs into one machine-executable program. For this Curry

developed various types of substitution as well as the procedures to calculate the addresses for those

substitutions.  Fig.  2  gives  a  graphical  representation  of  Curry’s  analysis  of  so-called  simple

substitution. Different operations needed in these substitution operations were described by Curry

also in terms of his combinators.43 

Fig. 1: Graphical representation of Curry’s operation of simple substitution. This comes down to the following. Given

two programs A and B which share the same data C and which are stored at different address locations, `compose’ a

new program ABC. 

 By reconnecting the earlier work of Curry on combinatory logic and his work on program

composition,  one  sees  how his  earlier  work  on substition  can  effectively  be  reinterpreted  as  a

dynamical model once it is (intended to be) applied effectively to program code which, by its very

nature, is intended to structure a (computational) process. Viz. the potentially dynamical nature of

Curry’s earlier model becomes real when it is executed on a machine. Moreover, since it is the work

of the human operator which is being automated, the simulative aspect of Curry’s work is not about

physical processes but about executing a model of human work. It is the logic of combinations and

43  Based on that analysis, Curry proposed some fundamental problems for programs such as the problem that 
different but equivalent algebraic expression might result in non-identical programs. Such problems are today still 
being studied in a computer science context where it is still unclear what it means for two programs to be identical. 
It is exactly in this more theoretical setting that a formal notion of simulation and bisimulation was introduced by 
Milner. For a recent paper on this problem, see (Angius and Primiero 2018). It is interesting to point out that within 
computer science, there is a very broad usage of simulation which is quite different from a notion of simulation as 
used within the physical and biological sciences. For instance, there is the notion of simulation as used in the 
context of (theoretical) machines (e.g. Turing machines) that `simulate’ others and the problem to what extent one 
(theoretical) machine can be said to simulate another. 



Curry’s approach to search for the simplest possible building blocks which allowed him to capture

the dynamical aspect of programs in quite a different manner than von Neumann (See Sec. 3.3.4.). 

But also Curry’s work on the calculation of ballistic trajectories gives another reading of

`simulation’ in the early computing context which is quite related to Lehmer’s earlier war work on

bombing  patterns  (Sec.  3.1.1.).  It  shows  that  the  fundamental  change  in  the  use  of  electronic

computing machinery does not  so much lie  in  the invention of a  fundamentally  new scientific

method (Monte Carlo simulation) as some kind of `tertium quid’ (Galison 2011: 137) next to more

theoretical  and experimental approaches (mostly at  the time) but instead in the need to rethink

existing calculatory methods which were already quite commonly used in a practice which aimed at

developing ways to `approximate’ physical realities to test and develop artillery weapons. From that

historical perspective, the idea of Monte Carlo being `elevated […] above the lowly status of a mere

numerical calculation’ (Galison 2011: 119)  becomes quite problematic. It was just part of a broader

historical  development  in  science  whereby  one  relied  on  calculation  rather  than  on  analytical

methods or experimentation because of various reasons. 

3.3. Von Neumann – formalism and mathematical physics

3.3.1. Background and involvement with ENIAC

Unlike Curry and Lehmer, von Neumann is a much celebrated computer pioneer and mathematician

who  has  contributed  (to  the  foundations  of)  a  great  variety  of  fields  and  subfields  including

computing, operator theory, economical theory, set theory and quantum theory. The following quote

by Halmos gives an indication of his status amongst mathematicians (Halmos 1973: 394):

“Von Neumann's greatness was the human kind. We can all think clearly, more or less, some

of the time, but von Neumann's clarity of thought was orders of magnitude greater than that

of most of us, all the time.”

In other words, and to stay with (Halmos 1973), von Neumann has become  a kind of hero for those

involved in the disciplines to which he contributed.44 As a consequence, one should be careful when

handling his scientific biography.45 One of the reasons for this was his apparent speed of thinking

and his ability to shift so easily from one to the other domain.46 

Despite  his  diversity  of  interests,  it  seems fair  to  say  that  von Neumann  was  first  and

foremost a Göttingen minded mathematician. In the early 1920s he had arrived in Berlin where he

44 As is often the case when such heroes are being created, there is also an aspect of legend (see again (Halmos 1973)). 

45 So, for instance, as is pointed out in (Hashagen …), many of the existing biographies often ignore, do not engage or 
make contradictory claims about von Neumann’s early scientific biography. In that same paper it is shown, amongst 
others, that around 1927 in Berlin, von Neumann was certainly not perceived of yet as a genius. 
46 Because of von Neumann’s status, much more has been written already on his contributions to computing and other

fields  and  I  refer  the interested  reader  to  some of  the existing historical  literature   (Haigh,  Priestley,  Rope 2016;

Priestley forthcoming; Aspray 1990).  



met Erhard Schmidt, another Göttingen mathematician and PhD student of Hilbert, who very much

supported von Neumann and discussed with him questions of foundations of mathematics.47 It was

upon the initiative of Hilbert and helped by Richard Courant that arrangements were made for him

to come to Götttingen in 1926 when he was only 23 years old, to become a Rockefeller fellow (Reid

1986: 336).48 He stayed there for the winter semester of 1926/1927 to return to Berlin. After his

Habilitation in 1927 at the Friedrich-Wilhelms-Universität, he became a Privatdozent in Berlin until

his emigration to the U.S.

Hilbert is of course well-known for his formalist program which, very roughly speaking,

aimed at providing a consistent foundation for mathematics by relying on finitary and formalist

methods.49 Von Neumann, apparently, had a special talent for the “art” of formalization – both in

providing clear and precise axioms and foundations as well as to `think formally´ (Ulam 1958:12) –

and so it is not surprising that Hilbert very much appreciated von Neumann’s work in this context.50

However,  after  he  had  heard  Gödel´s  talk  in  1930  at  Königsberg,  which  presented  the  now

(in)famous incompleteness theorem, and which is often considered as a fundamental blow to Hilbert

´s program,51 von Neumann turned his back on the Hilbertean ideal of mathematical logic. As was

the case with Curry, it would be exactly this more logical and formal work that would prove very

useful for his work in computing (See Sec. 3.3.3.). It was around the same time that von Neumann

was offered a position by Veblen at Princeton and so he emigrated to the United States where he

would stay for the rest of his (relatively short) life.52 

But having turned his back on mathematical logic and Germany certainly did not mean

turning  his  back  on  a  Göttingen  tradition  of  establishing  bridges  between  pure  and  applied

mathematics and, especially, physics. In the obituary Ulam wrote for von Neumann, he points at the

fact that in filling out a questionnaire of the National Science Foundation which asked, amongst

others,  for  what  von  Neumann  considered  to  be  his  most  important  contributions,  he  did  not

mention his contributions to mathematical logic but instead his contributions to the mathematical

foundations of `Quantum Theory and the Ergodic Theorem [and] the Theory of Operators´ (Ulam

1958: 21). Ulam continues:

This choice, or rather restriction, might appear curious to most mathematicians […] It seems

to indicate that perhaps his main desire and one of his strongest motivations was to help re-

establish the role of mathematics on a conceptual level in theoretical physics. 

47 See (Hashagen 2009) for a critical discussion of von Neumann’s early career and the signifance of Schmidt’s 
support.

48 For an overview of von Neumann’s early scientific biography, see (Hashagen 2006). 
49 See e.g (Mancosu et al 2009) for more details.

50 See (Murawski 2004) for a discussion of von Neumann’s contributions in this context.
51 It proves, very roughly speaking, that no finite axiomatic basis can completely capture mathematics,
52 Von Neumann died of cancer in 1957 when he was only 53 years old. 



From the Göttingen perspective this is certainly not a curious choice. Towards the end of the 19 th

century, Felix Klein who had actively started to transform the Göttingen mathematical department

into one of the world’s most famous mathematical centers, promoted a view of a close alliance

between  pure  and  applied  mathematics.  He  arranged  for  cooperations  with  industry  and  also

established Carl Runge as the first professor in applied mathematics at a German University. Thus,

Göttingen became a centre which promoted a universalist view in which mathematics is not isolated

from other sciences.53 This Kleinean ideal was picked up or promoted at other German universities.

In  Berlin  it  was  Erhard  Schmidt  who  created  a  new institute  for  Applied  Mathematics  at  the

Wilhelm-Friedrichs University with Ludwig von Mises as a director. It is from this perspective that

one can understand how Göttingen became a leading center for foundations of quantum mechanics

in the 1920s with contributions from Werner Heisenberg, Max Born and also Hilbert. Runge’s son-

in-law, Richard Courant, was the main author of the very well-known and two-volumed Courant-

Hilbert  book  on  methods  of  mathematical  physics  which  is  today  still  a  main  source  for

mathematical physics. It was translated to English in 1938 and formed an important impetus to the

formation of U.S. applied mathematics in the 1940s  (Siegmund-Schultz 2009). In the introduction

to that book, the view of a close alliance between the pure and applied becomes a major motivation:

“Since  the  seventeenth  century,  physical  intuition  has  served  as  a  vital  source  for

mathematical problems and methods. Recent trends and fashions have, however, weakened

the connection between mathematics and physics; mathematicians, turning away from the

roots  of  mathematics  in  intuition,  have  concentrated  on  refinement  and emphasized  the

postulational side of mathematics, and at times have overlooked the unity of their science

with physics and other fields. In many cases, the physicists have ceased to appreciate the

attitudes  of  mathematicians.  This  rift  is  unquestionably  a  serious  threat  to  science  as  a

whole; the broad stream of scientific development may split into smaller and smaller rivulets

and dry out. It seems therefore important to direct our efforts toward reuniting divergent

trends by clarifying the common features and interconnections of many distinct and diverse

scientific facts” (p. v-vi)

Courant himself  was a very strong supporter of this  idea.  He was convinced that the pure and

applied cannot and should not be separated but belong together in a unified mathematical science

(Reid 1986:342). It is within that spirit that he started to investigate the mathematical significance

of a method that had long been used within calculatory practices of table making, viz. the finite

difference method and which resulted into the very basic  and influential  paper  for 20th century

numerical analysis (Courant, Friedrichs and Lewy 1928). 

53 For more details on this Göttingen tradition see (Rowe 2018). 



By the time von Neumann moved to the United States, he was thus certainly familiar with

the idea of bringing closer pure and applied mathematics and especially physics (cfr his work on the

foundations of quantum mechanics) and so he was well equipped to become part of the small but

growing community of U.S. mathematicians like Curry and Lehmer who could use their talents in

the war effort in the Applied Mathematics Panel (see also (Aspray 1990: 34)).  However, his work

in  the  1930s  was  still  mostly  within  “pure”  mathematics  and  oriented  towards  providing

foundations for physics.

It was most probably under the initiative of Veblen (Aspray 1990, p. 26) that von Neumann

was asked as a consultant in 1937 at the BRL at Aberdeen where he would become a regular visitor

from that time onward. As he recounted later, it was by Robert Kent, a senior BRL official, that he

was introduced to `military science, and it was through military science that I was introduced to

applied sciences. Before this, I was […] essentially a pure mathematician. […] I have certainly

succeeded in losing my purity.’ (von Neumann, quoted in (Aspray 1990: 26)). At that time, von

Neumann shifted attention to problems of shock wave theory and fluid dynamics and realized that

the  best  approach to  these  problems might  be the use  of  brute-force  computational  methods  –

methods which were already extensively applied at BRL at the time (See Sec. 2 and 3.2.1). 

In the 1940s he also became a consultant and later a member of the Division 8 Explosives of

the NDRC where he worked on problems of detonation.  It  is perhaps no coincidence that also

Courant, who had emigrated to the U.S. after he had fled from Germany  in 1933 because he was

Jewish, was working on these problems. He also had been a councilor for  Division 8 and then

became the representative at the AMP for the contracts OEMsr-944, Investigation in shock wave

theory,  and  OEMsr-945  Research  in  problems  of  the  dynamics  of  compressible  gases,

hydrodynamics,  thermodynamics,  acoustics,  and  related  problems  ((Bush,  Conant  and  Weaver

1946a). Von Neumann on the other hand was the technical representative for the contract OEMsr-

1111 of the AMP with the Princeton Institute for Advanced Studies which had as a topic: `Studies of

the potentialities of general-purpose computing equipment, and research in shock wave theory, with

emphasis upon the use of machine computation.’ In other words, he became the Army’s specialist

for the use of computing machinery and its potential for studying problems in shock wave theory.

As explained,  von Neumann had become convinced (or,  better,  had  been convinced)  that  such

problems could not be handled by the usual methods of analysis and so he proposed the use of

brute-force  computation  instead.  Indeed,  in  one  of  the  summary  reports  of  the  AMP  titled

Mathematical studies relating to military physical research, a proposed numerical method due to

von Neumann (von Neumann 1944) for the handling of problems of shock waves is described as

follows (Bush, Conant and Weaver 1946a, p. 38):54

54 See (Galison 2011) for a detailed discussion of these computations. 



“The  hypotheses  of  isentropy  and  that  of  all  shocks  being  "straight"  are  generally  not

fulfilled.  When they are  abandoned,  however,  any exact  mathematical  analysis  becomes

quite  interactable  [sic],  by  any  methods  thus  far  employed  save  in  exceptional  cases.

Consequently,  considerable  importance  attaches  to  a  computational  treatment,  developed

under the Applied Mathematics Panel, which ignores shocks but which appears to produce

arbitrarily  good approximations  to a  rigorous theory allowing for  shocks.  The treatment

depends on a  much simplified  quasimolecular  model  in  place  of  the  continuous theory.

Experimental punch-card solutions produced satisfactory results with respect to precision

and duration of the computations.”

Thus, in the early 1940s, von Neumann was already quite familiar not just with the idea of using

brute-force to attack certain problems of (applied) physics but also with the idea of developing

another model so that the numerical method could be used. Moreover, and as was the case for Curry

and Lehmer, this kind of work is part of a broader and organized effort of the U.S.military and some

leading mathematicians to bridge the gap between applied and pure math. 

It was also because of his `interest in explosives was genuine’ (Kistiakowsky 1980: 62) that

von Neumann became a Los Alamos consultant and so he became a high-placed scientist  who

gained access to highly secret projects. It was in this role as an army consultant that he also paid

regular visits to Aberdeen and legend goes that it was during one of those visits in 1944 that he

accidentally met Herman H. Goldstine at Aberdeen Railway station where Goldstine informed hin

about the highly secret ENIAC project. Goldstine arranged the clearance documents and so soon

von Neumann became involved with the ENIAC project (and Goldstine his collaborator). 

3.3.2. Developing mathematics on the ENIAC: the A and H bomb problems

The story about von Neumann’s work on and with ENIAC has been told a number of times and so I

keep this section short. 

Von Neumann’s most well-known work on ENIAC, in collaboration with several others, concerns:

(1) the rewiring of the ENIAC

(2) the “first” Monte Carlo computations on ENIAC

ENIAC rewiring  The conversion of ENIAC into an EDVAC-like machine was very much

driven by von Neumann and the ideas elaborated in the EDVAC report written in 1945, though he

was certainly not the only one to have contributed to it. The main idea behind that conversion was

to  “program” the machine by instructions rather than by wiring which meant that the different

instructions to be used were wired once and for all inside of the machine and so could instead be

referred to by a code. There were at least two reasons for this rewiring of ENIAC into a kind of

stored-program and serial machine. First of all, “coding” a problem on ENIAC required less time to



set-up a problem than “wiring” it would. Secondly, in its original modus, the problems that could be

set-up on the machine were limited by the number of available units (mostly accumulators and

stepper counters) and so there was a serious restriction on the “size” of the problems that could be

ran on it. By switching to coded instructions, there was basically no restriction on the length of a

program. It was especially the latter  problem that had to be resolved to implement the planned

Monte  Carlo  computations  which  were  prepared  concurrently  with  the  rewiring  and  largely

motivated it.55  In fact, it seems fair to conclude on the basis of the analyses given in (Neukom

2006; Haigh, Priestley and Rope 2015) that the Monte Carlo method and the ENIAC conversion

(and its relation to (a) and (b)) were co-developed.  

The “first” Monte Carlo computations on ENIAC These are the well-known computations

which introduced the Monte Carlo method for the first time in the context of studying the behavior

of neutron chain reactions for fission devices. Here is von Neumann’s often quoted description of

the general idea behind the computation, in a letter to Richtmeyer dated March 11, 1947 and which

also includes a more detailed “computation sheet” for the computation (quoted from (Metropolis

1987: 127)): 

“Consider a spherical core of fissionable material surrounded by a shell of tamper material.

Assume some initial distribution of neutrons in space and in velocity but ignore radiative

and hydrodynamic effects. The idea is to now follow the development of a large number of

individual neutron chains as a consequence of scattering, absorption, fission and escape. [...]

[A] genealogical history of an individual neutron is developed. The process is repeated for

other  neutrons  until  a  statistically  valid  picture  is  generated.  [...]  How  are  the  various

decisions made? To start with, the computer must have a source of uniformly distributed

pseudo-random numbers.”

Whereas  the  use  of  random  decisions  for  studying  (models  of)  physical  processes  in  a

computational or other setting, was certainly not new (see the Lehmer example in Sec. 3.1.1.) it was

only with the high-speed and converted ENIAC that such methods could be more fully explored,

especially for larger problems which were computation-intensive and required a relatively complex

and lengthy program. The method for handling the logical complexity on the programming level

was the use of a (rather complicated) flowdiagram as developed in (Goldstine and von Neumann

1947/1948).56 Thus,  we  see  that  the  computational  challenges  posed  by  the  Monte  Carlo

computation were practically handled by the (converted) ENIAC and more systematically by von

Neumann’s  report  on  the  EDVAC  and  the  sequence  of  reports,  written  with  Goldstine,  on

flowdiagrams (Goldstine and von Neumann 1947/1948). Thus, one can conclude that the Monte

55 Chapters 7 and 8 of (Haigh, Priestley and Rope 2015) give a detailed account of this. 
56 In (Haigh, Priestley and Rope 2015) the different flowdigrans for the the different stages of the Monte Carlo 

computation are given and discussed in more detail. 



Carlo method in its first application in the ENIAC context, not only resulted from but also very

much drove the new technology under development. 

The rewiring of ENIAC and the Monte Carlo computations were certainly not the only

achievements  to  which  von  Neumann  contributed  in  the  ENIAC  context.  One  interesting

contribution is related to the need for random numbers for the Monte Carlo computation. Given the

speed of the computations, providing the random numbers externally would slow down the process

and so  von Neumann came up with  the  idea  of  having the  machine  compute  its  own random

numbers and so developed a numerical method for computing (pseudo)random numbers. This is the

middle square method. Von Neumann’s interest in pseudo-random numbers most probably led to

von Neumann’s interest in computing the first 2000 digits of pi and e though it should be pointed

out that he was not the first one to have thought of this kind of computations in the ENIAC context

(See Sec. 3.2.2.). As is recounted in (Reitwiesner 1950: 11):

“Early in June, 1949, Professor John von Neumann expressed an interest in the possibility

that the ENIAC might sometime be employed to determine the value of π and e to many

decimal places with a view toward obtaining a statistical  measure of the randomness of

distribution of the digits [...]”

Indeed, the purpose of those computations was to know more of the probability distribution of the

digits of both numbers. It was concluded that `the material has failed to disclose any significant

deviations from randomness for π, but it has indicated quite serious ones for e.’ (Metropolis, von

Neumann and Reitwiesner 1950: 109) Thus, ENIAC not only made possible the Monte Carlo study

on a scale that was not possible before but it also resulted in an interest in a new class of problems,

viz. that of pseudo-random numbers. 

Besides, I briefly mention von Neumann’s contributions to numerical analysis and, more

specifically, the study of error propagation, which is closely related to von Neumann’s interest in

pseudo-random numbers.57 This  is  elaborated  in  the paper  (Goldstine  and von Neumann 1947)

which provides a `rigorous discussion’ of the problem of deriving `rigorous estimates in connection

with the inversion of matrices of higher order’ (von Neumann and Goldstine 1947: 1022) Just as

Schoenberg’s method of splines, it is very much rooted in the problem of round-off errors: given the

discrete nature of machines like ENIAC one can `achieve any desired precision’. (von Neumann

1958: 25). However, because of the high-speed of the operations on numbers, errors occurring in

each operation are superposed. Hence, it  is quite important to have an estimate of the precision

needed in order to avoid such round-off errors. 

57 In fact it is quite probable that von Neumann’s so-called middle-square method originated in his research on round-
off errors. See in this context (von Neumann 1951). 



3.3.3. A Göttingen mathematician engaging with ENIAC - reflections

The shift in von Neumann’s work around 1940 from developing pure mathematics for theoretical

physics  to  the  use  of  brute-force  calculations  might  seem curious  at  first.  Indeed,  even  today

`Proceeding by “brute force” is considered by some to be more lowbrow’. (Ulam 1980:94). As is

shown in  Sec.  3.3.1.  however,  von  Neumann  was  already  coming  from a  tradition  where  the

building of bridges between the pure and applied was very much promoted. Also, von Neumann

himself  became  an  active  supporter  himself  of  this  viewpoint.  The  following  quote  from  The

mathematician (von Neumann 1947b) in fact echoes some of the words from the Courant-Hilbert

book quoted in Sec. 3.3.1.:

I  think  that  it  is  a  relatively  good  approximation  to  truth  […]  that  mathematical  ideas

originate in empirics, although the genealogy is sometimes long and obscure. But, once they

are so conceived, the subject begins to live a peculiar life of its own and is better compared

to  a  creative  one,  governed  by  almost  entirely  aesthetical  motivations  […]  As  a

mathematical discipline travels far from its empirical source [...] it is beset with very grave

dangers. It becomes more and more purely aestheticizing, more and more purely I'art pour

I'art.  [...]  But there is a grave danger that the subject […]  so far from its  source,  will

separate into a multitude of insignificant branches, and that the discipline will become a

disorganized mass of details and complexities [m.i.] […] [W]henever this stage is reached,

the only remedy seems to me to be the rejuvenating return to the source: the re-injection of

more or less directly empirical ideas. 

So,  when von Neumann was introduced at  BRL and saw the potential  of using calculation for

problems of applied mathematics at work, the move from the pure to the applied side is perhaps less

surprising. The computer then, both as a tool for studying problems from mathematical physics and

as a device which demands its own mathematical theory, is exactly the kind of in-between which

served very well this purpose of re-injecting empirical ideas into mathematics. And an in-between it

certainly was to von Neumann. In one of his lectures of the series of lectures titled  Theory and

Organization of Complicated Automata delivered at the University of Illinois in December, 1949, he

frames  computing  machines  as  tools  in-between  mathematical  and  experimental  methods  for

studying certain problems (typically, the non-linear ones like turbulence) (von Neumann 1966, pp.

33–35): 

“In pure mathematics the really powerful methods are only effective when one already has

some intuitive connection with the subject […] A very great difficulty in any new kind of

mathematics is that there is a vicious circle: you are at a terrible disadvantage in applying

the  proper  pure  mathematical  methods  unless  you  already  have  a  reasonably  intuitive

heuristic relation to the subject and unless you have had some substantive mathematical



successes in it already [...] progress has an autocatalytic feature. Almost all of the correct

mathematical surmises in [the area of the non-linear sciences] have come in a very hybrid

manner from experimentation. If one could calculate solutions in certain critical situations

[…] one would probably get much better heuristic ideas. [...] there are large areas in pure

mathematics where we are blocked by a peculiar inter-relation of rigor and intuitive insight,

each  of  which  is  needed  for  the  other,  and  where  the  unmathematical  process  of

experimentation with physical problems has produced almost the only progress which has

been made. Computing, which is not too mathematical either in the traditional sense but is

still closer to the central area of mathematics than this sort of experimentation is, might be a

more flexible and more adequate tool in these areas than experimentation.[m.i.]”

Thus, for von Neumann, the computer was the ideal tool to study those problems for which the

more  traditional  methods  of  mathematics  did  not  allow for  an  intuitive  understanding  of   the

problem set and so the computer, which was still more mathematical than pure experimentation,

was the next best thing available. We see here von Neumann’s version of Galison’s “tertium quid”

(Galison 2011: 137): the computer as a tool which connects the two traditions of experimental and

mathematical physics. However, as was the case with Curry and Lehmer too, this `tertium quid’ was

very much prepared by a tradition in which one was already moving across disciplinary boundaries.

Von  Neumann’s  reflections  on  computing  machines  as  a  user  went  hand-in-hand  with

reflections from the more theoretical side of the bridge between the pure and applied: there is of

course  his  later  work  on  automata,  which  provided  a  basic  model  used  in  current  simulation

contexts viz. cellular automata, but before that he also described a more theoretical model for a

computing machine known as the EDVAC model and which was very much rooted in some of the

issues with the original ENIAC (see Sec. 3.3.2.).  As has been discussed elsewhere (Aspray 1990;

Haigh, Priestley, Rope 2016), that model abstracts from engineering details and instead uses the

formal model of neuron nets developed by McCullogh and Pitts (McCullogh and Pitts 1943). The

latter paper also abstracts away from `the physiological and chemical complexities of what a neuron

really is’ (von Neumann 1966: 43) and instead uses a framework of formal logic. Amongst others, it

refers to Turing’s work on abstract computing machines, viz. formal models for defining the notion

of (human) computability and which retrospectively became known as an important model for the

modern computer58 The McCullogh and Pitts paper thus had an important effect on von Neumann’s

work in computing not just by the application of its methods and ideas in the EDVAC context, but

also as a basic reference in his reflections on natural and artificial automata.59 This is not  surprising:

58  But see (Daylight2014;Haigh 2014) for a critical discussion of the significance of the model for the development of
the modern computer. 

59 See for instance the second lecture at Illinois University titled `Rigorous Theories of Information and Control’ 
which deals mostly with the Turing model and the McCullogh-Pitts model.



the idea of connecting the field he had turned his back on, viz. mathematical logic, with `empirical’

processes, whether they be engineered or not, must have been very appealing to him in the light of

his viewpoint as phrased in  The mathematician: it offered him yet another opportunity to reinject

the empirical back into that part of mathematics which had been so devoid of any empirical content

and, perhaps because of that, failed (at least in von Neumann’s view).60 

The possibility of a new role for formal logic within the field of computing was further

explored by von Neumann in his work on programming (together with Hermann H. Goldstine) and

developed in the three reports (von Neumann and Goldstine  1947-48).61 These reports are often

considered as one of the first historical sources on programming:62 the flowdiagram idea developed

in it, was for a long time a much used method within programming.63  According to von Neumann,

the need for a  more logical approach to programming, which he called the planning and coding of

problems,64 is rooted in the high speed of the computer (von Neumann 1948): 

“[C]ontemplate  the  prospect  of  locking twenty  people  for  two years  during  which  they

would  be  steadily  performing  computations.  And  you  must  give  them  such  explicit

instructions at the time of incarceration that at the end of two years you could return and

obtain the correct result for your lengthy problem! This dramatizes the necessity for high

planning, foresight, and consideration of the logical nature of computation. This integration

of logic in the problem is a consequence of the high speed. [m.i.]”

More specifically, logic can be used to structurally capture the so-called `dynamical’ aspect, the

flow,  of  a  computation – that  is,  the structured ordering of  how orders  have to executed.  It  is

introduced  mostly  because  of  the  use  of  loops,  subroutines  and  conditionals  in  high-speed

computing which make that the actual flow of the program is not reflected by the mere sequencing

of coded instructions, viz. the control C might have to jump back or forward. This dynamical stage

of the planning and coding of problems was quite strictly separated by von Neumann from the so-

called static part of coding or the microscopic stage of coding, viz. the individual coding of every

single operation indicated in the flowdiagram. Indeed, the flowdiagram is the tool to be used for the

60 In fact, it is worth pointing out that in The Mathematician von Neumann’s main argument in favor of reconnecting 
the pure with the empirical is concerned with Gödel’s incompleteness results which showed him that one should be 
cautious `against taking the immovable rigour of mathematics too much for granted. This happened in our own 
lifetime, and I know myself how humiliatingly easily my own views regarding the absolute mathematical truth 
changed during this episode’  (von Neumann 1947)

61 The following paragraphs are based on two talks I gave in 2014 and 2016. The slides from 2016  (in French) are 
available here: https://hal.archives-ouvertes.fr/cel-01345599

62 But see (De Mol, Carlé and Bullynck 2015) for a critical discussion.
63 See (Ensmenger 2016) for a historical paper on the use of flowdiagrams (later called flowcharts)..
64 It is quite interesting to point out that von Neumann did not really use the programming terminology which, as is 

known, had its roots in ENIAC (See (Grier 1996) for a short paper on the use of this programming technology in 
the ENIAC. It should be pointed out however that the word”program” was effectively used by, amongst others, 
Curry to refer not just to the circuitry but also to the more contemporary understanding of `program’.



dynamic stage whereas the static stage is merely a sequence of coded instructions resulting from

“using” the information of the flowdiagram (See Fig. 3 and 4). 

Fig.  3:  Flowdiagram  of  the  first  problem  discussed  in  (von  Neumann  and  Goldstine  1946-48)  which  requires  a

flowdiagram. This is the following problem: for u1, ..., ui compute v1, ..., vI with vj = a2uj + buj + c/ duj + e with each pair

uj,vj stored at two neighbouring locations m + 2j-2, m+2j-1 and m and I stored at certain memory locations. 

This separation between the static and the dynamical stage in the planning and coding is quite strict

and reflected in what one could call a division of labor for the planning and coding of programs

where the dynamical stage requires a `mathematician or [..] [a] moderately mathematically trained

person’ and the static stage someone with a `moderate amount of experience’.65 

65 There are in fact four stages identified for the planning and coding of problems in (von Neumann and Goldstin 
1947-48): 
Stage 1: The mathematical phase (preparing): this is basically the analysis of the problem, its algorithmization as
well as an error estimate. Clearly, this phase is conducted by mathematicians.
Stage 2: the dynamical stage (preparing): requires a `mathematician or [..] [a] moderately mathematically 
trained person’  (von Neumann and Goldstine 1946-48)
Stage 3: the static phase (coding): requires someone with a `moderate amount of experience’
Stage 4: the final stage (coding): this concerns the actual `assigning of all storage positions and all orders to their
final numbers.’  No indication on who should do this.



Fig. 4: Part of the static coding for the problem from Fig. 3.  

The result is a framework which in theory looks very nice but in practice becomes quite quickly a

rather messy method. Indeed, even in the first problem which requires a flowdiagram (Fig. 3), one

quickly sees the need for adding additional information outside of the flowdiagram (e.g. for the

memory allocation). Moreover, the third volume of the report, which was assumed to deal with the

problem  of  subroutines  and  which  is  basically  the  same  as  Curry’s  problem  of  program

composition, provides an approach which is very close to the machine and certainly does not allow

for the kind of automation Curry was aiming at. Nonetheless, von Neumann was convinced that

(von Neumann 1948):

“the problem of coding routines need not and should not be a dominant difficulty [In] fact

we have made a careful analysis of this question and we have concluded from it that the

problem of coding can be dealt with in a very satisfactory way.” 

And indeed, later he would not revisit this coding problem but focus instead on, for instance, the

memory problem which he considered to be unresolved. The basic difference between Curry and

von  Neumann  is  perhaps  the  fact  that  in  von  Neumann’s  understanding  a  “program”  is  a

representation of the dynamical behavior of the machine whereas in Curry’s case it is much more

about the program itself. To quote Lehmer, who was apparently not aware of Curry’s work (Lehmer

1951):  

“Much  has  been  said,  but  little  written,  about  the  logic  or  even  the  topology  of

programming.  Logicians  and  topologists  are  not  coming  to  the  rescue  of  the  desperate

programmer.  [...]  This  is  the  combinatorial  complexity  to  which  I  have  referred.  Flow

diagrams  showing  the  routines,  subroutines,and  other  wheels  within  wheels  are  hardly

distinguishable from the block diagrams of the machine itself; the latter, however, are made

once and for all. This then is the white mans burden of large-scale computing.”

The result is a static schematic which cannot be used in a dynamical manner by the machine, or, put

differently,  in contrast  to Curry’s theory of program composition,  von Neumann’s model of the



planning and coding of problems is not a dynamical one and so cannot result in a `simulation’ of the

programmer/coder and so the planning remains separated from the coding itself. 

4. DISCUSSION `A PRETENCE OF WHAT IS NOT’

What, if anything, is the impact of high-speed computing on science?  This is the driving

question behind current  discussions  on computer  simulation.  The aim of  this  paper  was  not to

contribute  directly to such discussion but instead to provide  a broader and deepened historical

perspective by revisiting the so-called roots of computer simulation in the use of Monte Carlo

methods by von Neumann and Ulam and studying the historical context in which those arose. 

As is shown here the Monte Carlo computations belong to a broader (set of) institutional,

scientific and technological traditions. Thus, the apparent `chaotic assemblage of disciplines’ which

`have no single history that can be narrated smoothly across time’  but which shared a practice that

was `sufficiently congruent in the years just after  World War II’ (Galion 2011: 119) becomes less

chaotic  in  the  light  of  the  steady  organization  of  military  science  and  the  involvement  of

mathematicians. This goes back, for the U.S. at least,66 to the end of the first World War and so

when the U.S. enters the second World War, several mathematicians like Lehmer and Curry get

involved  with  the  war  effort.  Moreover,  there  is  von  Neumann  (and  with  him  several  other

emigrated mathematicians) who was coming from the Göttingen tradition which promoted a view

of a close connection between pure and applied mathematics. Finally, there were also the existing

calculational  practices  of table  making for  scientific  or other  purposes  and which involved the

working together of mathematicians, engineers and human computers as well as the increased use

of calculatory instruments. It is against this background that one can understand that when the AMP

is created in late 1942, there is a `complete lack of astonishment which greeted [the] contributions

[of  the  AMP members]’ (Bush,  Conant,  Weaver  1946a,  p.  v).   Or,  put  differently,  the  idea  of

`radically different activities’ which could now be locally coordinated in the trading zone that was

supposedly  constituted  by  Monte  Carlo  (Galison  2011:  119),  needs  perhaps  to  be  seen  in  the

inverse: it is the steady working together and crossing of disciplinary boundaries together with the

equally steady mechanization and organization of computation which makes possible and requires

the development of new methods and technologies. These new methods and technologies in their

turn,  increased  the  need  for  this  kind  of  crossing  of  (perhaps  retrospectively  so-construed)

disciplinary boundaries. They did not, however, make it possible. 

But the historical perspective on Monte Carlo not only needs to be broadened by connecting

it to what came before, and so as the result and continuation of a development, but also in relation

to what happened around the same time locally. First of all, thé Monte Carlo computations were

clearly not the first or only instances in which one decided to rely on calculation rather than on

66 The U.s: was actually quite late with this in comparison to, for instance, France. See (Aubin and Goldstein 2014). 



“pure” mathematical  methods and/or  “real”  experiments  at  that  time.  Perhaps the most  explicit

example of this discussed in this paper was the use of so-called model experiments which are very

close if not identical to the idea behind the Monte Carlo computations.67 Moreover, and especially if

we consider the ENIAC context, it is understood that the main concern was the development of

efficient  mathematical  methods  and  programming  techniques  which  were  adapted  to  the

particularities of the machine (its high-speed and general programmability) in order to tackle older

and newer problems. One example is the Curry inverse interpolation problem which is framed in a

problem context where one aimed at  `approximating’ physical realities to test and develop artillery

weapons. Put differently, it is the machine and the problems one wanted to attack with it which

required a fundamental rethinking of the three interrelated practices around the machine, viz.:

• The mathematics used and developed, see for instance the use of an idiot approach (Sec.

3.1.2.); new approximation methods (Sec. 3.2.2.) or new methods for generating “random”

numbers (Sec. 3.3.2.)

• Programming, see for instance Curry’s theory of program composition (Sec. 3.2.3.) or von

Neumann and Goldstine’s flowdiagram approach (Sec. 3.3.3.)

• machine design, see for instance the ENIAC conversion and EDVAC design (Sec. 3.3.3.)

These structured practices are given content through the particular viewpoints, backgrounds and

purposes of the different “users” involved.  Thus, what mattered first of all was not questions of

`simulation’ but questions of good computational methods for specific problems independent of

whether  or  not  they  created  some kind of  tertium quid.  In  that  perspective,   the  Monte  Carlo

technique is just one of the many methods and there is no fundamental reason why it should be

considered  as  being  more  `elevated’ or  special  than  say  Lehmer’s  exponent  computation  or

Schoenberg’s splines.

Moreover, we see that if one re-interprets retrospectively some of the other work that was

done  in  the  wake  of  the  ENIAC context,  as  simulative  work,  that  the  usual  understanding  of

`simulation in the 1940s and 50s’ as in mimicking some physical process by relying on randomized

methods, at least needs to be recast in the context of programming (and so consider the intertwining

of mathematical logic and engineering) and the context of number theory (and so the computer as

an “analog” machine for doing number theory).  

Thus, instead of focusing on (philosophical issues of) simulation and on what the relation is

between the simulator and what it mimicks, the focus was here on what it actually is and how it is

made.  By  so  doing,  I  have  shown  that  accounts  of  (computer)  simulation  which  assume  a

discontinuous history which has one main starting point (the rise of the modern computer and the

67 Though, of course they were not used to study thermonuclear problems nor were the computations done with the 
help of a high-speed device like ENIAC. 



“first” Monte Carlo computations) give a reductive and singular account which might distort our

current views on simulation. As such, one strengthens what can be understood as a double hiding in

research on simulation. First,  by focusing on simulation and not on computational methods one

hides the plurality and diversity of practices and how they are determined not just by what they are

supposed to simulate but also the techniques, programming interfaces and, ultimately (historically)

the machine. Secondly, because of the additional connotation of `simulation’ as a “mimicking” this

hiding is strengthened. Viz, it suggests that it suffices to look at what is being simulated and not at

what constitutes the simulator. As such, simulation really becomes “a pretence of what is not”,

connecting it back to its older meanings.68 This is not only a problem for philosophers or historians

of science but a very real one today when science more and more relies on computation and where

scientists  alongside  mathematicians  are  more  and more  confronted  with issues  of  transparancy,

error,  open and closed software,  etc  (See  e.g.  (Ince  2012)).  Uncovering some of  the  historical

complexities of `simulation’, retracing its so-called origins, is one strategy against such issues.
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