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ABSTRACT

In recent years, much research has been devoted to the restoration
of Poissonian images using optimization-based methods. On the
other hand, the derivation of efficient and general fully Bayesian
approaches is still an active area of research and especially if stan-
dard regularization functions are used, e.g. the total variation (TV)
norm. This paper proposes to use the recent split-and-augmented
Gibbs sampler (SPA) to sample efficiently from an approximation of
the initial target distribution when log-concave prior distributions are
used. SPA embeds proximal Markov chain Monte Carlo (MCMC)
algorithms to sample from possibly non-smooth log-concave full
conditionals. The benefit of the proposed approach is illustrated on
several experiments including different regularizers, intensity levels
and with both analysis and synthesis approaches.

Index Terms— Bayesian inference, image restoration, Poisson
noise, split-and-augmented Gibbs sampler.

1. INTRODUCTION

Poisson noise can appear in a lot of image processing problems
where observations are obtained through a count of particles (e.g.
photons) emitted by the object of interest and arriving in the im-
age plane where a detector (e.g. a charged coupled device (CCD)
camera) is located [1]. For instance, this statistical property of the
noise occurs in emission tomography (ET) [2], fluorescence mi-
croscopy [3] or astronomy [4, 5]. In particular, a growing interest in
restoring astronomical Poissonian images can be traced back at least
to the Hubble Space Telescope optical aberration in the early 90’s.
Methods to tackle such image restoration problems in these years
were mainly based on Tikhonov-Miller inverse filter and maximum
likelihood (ML) estimation via the expectation-maximization (EM)
algorithm [2, 6, 7]. This is for instance the case for the classical
Richardson-Lucy algorithm [8, 9] used and revisited in a lot of ap-
plications [10, 11] since noise amplification tended to appear. We
refer the interested reader to [12] for a review of Poissonian image
restoration methods up to 2006. Since then, much research has been
devoted to these problems and a lot of advances have been made in
optimization-based methods. Among other works, [13] considered
a forward-backward splitting algorithm using the Anscombe vari-
ance stabilizing transform (VST) [14] while [15–17] used alternate
minimization schemes in order to tackle the exact Poissonian like-
lihood function. The optimization-based algorithms derived by the
aforementioned authors appear to be efficient in various scenarios
ranging from analysis to synthesis approaches [18] with different
regularization functions (e.g. total variation (TV) [19] or ℓ1 norm)
in low or high signal-to-noise ratio (SNR) cases.

On the other hand, Poissonian image restoration with fully
Bayesian approaches, such as Markov chain Monte Carlo (MCMC)

methods, has not benefited from these recent advances in opti-
mization making them less attractive. In particular, their high
computational cost compared to variational methods can be pro-
hibitive in high-dimensional applications (e.g. in astronomy) where
the size of the observations can be of the order of the megapixel
(resp. megavoxel). As a result, few efficient simulation-based
methods exist to tackle image restoration under Poisson noise. For
instance, [20, 21] dealt with the Poissonian likelihood by using a
Taylor series expansion leading to a quadratic approximation of
the former. In a similar vein, [22] used a Metropolis-within-Gibbs
algorithm with a Gaussian proposal while the Riemmanian manifold
Hamiltonian Monte Carlo method [23] has been proposed in [24].
Finally, a recent MCMC approach has been proposed in [25] ex-
ploiting the Poisson-Gamma conjugacy which appears to compete
with standard regularization functions such as TV.

However, up to our knowledge, no fully Bayesian approach con-
sidered the sampling from a posterior distribution built on a Poisso-
nian likelihood and standard convex and possibly non-smooth reg-
ularizers. This paper proposes an approach relying on the recent
split-and-augmented Gibbs sampler (SPA) [26] to tackle this prob-
lem. In particular, the log-concave property of the prior permits to
derive log-concave full conditionals that can be sampled by proxi-
mal MCMC algorithms [27, 28] which rely on proximity operators
of convex funtions. This approach permits to fulfill a number of
important criteria for the practitioner. It yields good and reliable
reconstruction results, a moderate computational time compared to
optimization-based methods, the computation of credibility intervals
and the ability to approximate several Bayesian estimators in a single
run.

To this purpose, Section 2 presents the considered image pro-
cessing problem and the main sampling issues associated to the de-
rived posterior. Section 3 presents how SPA can handle complicated
probability distributions of the form (7) with an approximate but
controlled sampling scheme. Then, Section 4 derives SPA for the
considered Poissonian image restoration problem where full con-
ditionals are sampled using efficient state-of-the-art MCMC meth-
ods. The proposed approach is illustrated on several experiments
and compared to its determistic counterpart described in [16] as well
as to the proximal Moreau-Yoshida unadjusted Langevin algorithm
(P-MYULA) [28] although its direct application is not straightfor-
ward and necessitates approximation schemes. Finally, Section 5
draws concluding remarks.

2. PROBLEM FORMULATION

This section presents the Bayesian inference problem related to
Poissonian observations with a log-concave prior distribution. The
main properties of the derived posterior distribution are presented
before giving a brief review of existing Markov chain Monte Carlo
(MCMC) methods that could be used to sample from this posterior.



2.1. Model

In this section, we consider the observation of some image y ∈ Nm,
damaged (e.g. blurred or with missing pixels) and contaminated by
Poisson noise. We assume that each individual observation yi, i ∈J1,mK corresponds to an independent realization of a Poisson ran-
dom variable, that is for all i ∈ J1,mK,

yi
i.i.d.∼ P

(
[Hx+ b]i

)
, (1)

where x ∈ Rd
+ stands for an original image to recover, H ∈ Rm×d

is an operator related to the point spread function (PSF) and b ∈ Rd
+

stands for some background noise, e.g. accidental coincidences in
positron emission tomography (PET). We assume in the sequel that
for all x ∈ Rd

+, Hx ∈ Rd
+. In order to make an easier link with the

proposed approach, the likelihood distribution is rewritten as follows

p(y|x) ∝ exp
(
−f1(Hx;y)

)
, (2)

where

f1(Hx;y) =

m∑
i=1

−yi log
(
[Hx+ b]i

)
+ [Hx+ b]i. (3)

Following a Bayesian approach [29], the prior distribution is de-
fined as follows for all x ∈ Rd,

p(x) ∝ exp
(
−f2(x)− f3(x)

)
, (4)

where f2(x) = τψ(x) and f3(x) = ιRd
+
(x), (5)

where ψ : Rd → R stands for a proper, coercive, convex, lower
semicontinuous (l.s.c), possibly non-differentiable function, τ is a
positive parameter; ιC is the indicator function of set C, i.e. ιC(x) =
0 if x ∈ C and ιC(x) = +∞ otherwise. The functions f2 (via ψ)
and f3 being convex, the potential f2 + f3 is also convex and the
prior in (4) is log-concave. The function f2 stands for some regu-
larization term (e.g. ℓ1 norm) while the function f3 guarantees the
non-negativity of the original image x since the latter can be viewed
as an intensity. By the application of Bayes’ rule, the posterior dis-
tribution writes

π(x) ∝ exp
(
−f1(Hx)− f2(x)− f3(x)

)
, (6)

and has the following properties stated by Proposition 1.

Proposition 1. 1. The posterior distribution π is log-concave.

2. The potential function f = f1 + f2 + f3 associated to π is
proper, l.s.c, coercive and convex. Additionally, if yi ̸= 0 for
all i ∈ J1,mK, f is strictly convex.

3. The negative log-likelihood function f1 is differentiable but is
not gradient-Lipschitz continuous.

Proof. The proof of these properties follows directly from [16].

2.2. Related work

Up to our knowledge, no previous work considered the direct or ap-
proximate sampling from the posterior distribution π defined in (6).
Following Proposition 1, − log π is convex and possibly not dif-
ferentiable. In this setting, since − log π is not differentiable, one
could not resort to Hamiltonian Monte Carlo (HMC) methods [30]
to sample from π. These methods were for instance resorted to sam-
ple from π with f2 = f3 = 0 in [24]. Then, one could think

of using proximal MCMC approaches [27, 28] to tackle the non-
differentiability of the potential function associated to π thanks to
Moreau-Yoshida regularization [31]. However, these approaches re-
quire the existence of a smooth gradient-Lipschitz continuous term
in the potential function which is not the case in the problem consid-
ered, see property 3 in Prop. 1. Note that it is possible to tackle this
issue by using the Anscombe variance stabilizing transform [14],
see Section 4. Additionally, proximal MCMC algorithms assume
that the proximal operator associated to the non-smooth potential,
here f2 + f3, is available. This is not the case for the considered
potentials defined in (5) if one considers a synthesis frame-based
approach, see Section 4.1. Therefore, one has to resort to a more
complicated scheme (e.g. the splitting method of maximal mono-
tone operators [32,33]) to compute this proximity operator. To avoid
the above issues, the considered sampling problem is dealt with by
resorting to a variable-splitting inspired MCMC algorithm, namely
the split-and-augmented Gibbs sampler (SPA, see Section 3) that we
recently proposed in [26]. Then, each full conditional distribution
involves a smooth gradient-Lipschitz continuous potential function
along with a possibly non-smooth potential enabling the use of prox-
imal MCMC for each of them.

3. SPLIT-AND-AUGMENTED GIBBS SAMPLER

This section presents a particular type of variable splitting-inspired
hierarchical Bayes models in order to solve the inference problem
presented in Section 2.1. The associated joint distribution, namely
the split-and-augmented distribution is presented along with its main
properties and will be targetted by SPA. In the sequel, the object x
to infer is not necessarily the original image (e.g. x could be coef-
ficients associated to a frame). Thereby, in order to embed a large
number of cases, the variable splitting-based approach is presented
below under a general formulation.

3.1. Hierarchical Bayes model

Let us start from the initial target distribution π under the very gen-
eral form

π(x) ∝ exp

−
b∑

i=1

fi(Kix)

 , (7)

where for all i ∈ {1, . . . , b}, Ki ∈ Rdi×d stands for a possible
operator (e.g. blur, decimation, wavelet transform) acting initially
on x. We consider the variable splitting-inspired approach of [26].
We introduce some splitting and auxiliary variables z1:b ∈ Rdi and
u1:b ∈ Rdi , respectively. The new joint target distribution πρ,α is
defined as follows

πρ,α(x, z1:b,u1:b) ∝ exp

−
b∑

i=1

fi(zi)

+φ1(Kix, zi − ui) + φ2(ui)
)
, (8)

where φ1, φ2 are two divergence functions such that πρ,α de-
fines a proper probability distribution. In the sequel, we choose
the following forms for these two functions for all x, zi and
ui, φ1(Kix, zi − ui) = (2ρ2)−1

∥∥Kix− (zi − ui)
∥∥2

2
and

φ2(ui) = (2α2)−1 ∥ui∥22, where ρ, α > 0. This choice stems
from the fact that φ1 is a convex, lower bounded, continuously
differentiable and gradient Lipschitz function preluding the use of



proximal MCMC algorithms to sample from each full conditional
distribution of πρ,α within a Gibbs sampling scheme. Additionally,
the quadratic form for φ2 was chosen for conjugacy properties with
φ1. The properties of the split-augmented distribution πρ,α defined
in (8) are presented in Proposition 2.

Proposition 2. Assume that the potential function associated to π
in (7) is proper, convex, l.s.c and coercive. Then

1. the full conditional distributions under πρ,α are log-concave
with a lower-bounded, smooth gradient Lipschitz continuous
potential term along with a proper and l.s.c term.

2. in the limiting case ρ → 0, the marginal distribution associ-
ated to x under πρ,α coincides with π.

Proof. The proofs corresponding to each property can be easily
derived using the fact that a l.s.c and coercive function is lower-
bounded and by using the proof of [26, Theorem 1].

3.2. Gibbs sampler

Since sampling from π could be not straightforward with the exist-
ing MCMC approaches (see Section 2.2), the sampling from πρ,α is
considered through the Gibbs sampler SPA [26] which targets alter-
natively each full conditional distribution namely for all i ∈ J1, bK
πρ,α(zi|x,ui) ∝ exp

−fi(zi)−
∥∥Kix− (zi − ui)

∥∥2

2

2ρ2

 (9)

πρ,α(ui|x) ∝ exp

−
∥ui∥22
2α2

−
∥∥Kix− (zi − ui)

∥∥2

2

2ρ2

 (10)

πρ,α(x|zi,ui) ∝ exp

−
b∑

i=1

∥∥Kix− (zi − ui)
∥∥2

2

2ρ2

 . (11)

The associated sampling details are presented hereafter depending
on the form of each full conditional.
Log-concave full conditionals – To begin with, the full condition-
als associated to the splitting variables z1:b are log-concave with a
smooth gradient Lipschitz term (related to φ1) and can be efficiently
sampled using the proximal Moreau-Yoshida unadjusted Langevin
algorithm (P-MYULA) if the proximity operators of f1:b are avail-
able or can be approximated.
Gaussian full conditionals – On the other hand, the full condi-
tional distribution associated with the variable of interest x is now
Gaussian due to φ1 with a possibly non-diagonal covariance ma-
trix. However, in cases where the matrices Ki are either diago-
nal or block-circulant, one can resort to the Fourier domain and to
the Sherman-Morrison-Woodbury formula to re-write this covari-
ance matrix with diagonal matrices. Then, the exact perturbation-
optimization (E-PO) algorithm [34] can be used to sample efficiently
the full conditional distribution associated to x. Additionally, the full
conditionals associated to the auxiliary variables u1:b are Gaussian
with diagonal covariance matrices and can be sampled efficiently
even in high dimension.

4. APPLICATION TO POISSONIAN IMAGE
RESTORATION

This section illustrates the proposed approach on Poissonian image
restoration problems with either an analysis or a synthesis approach.

4.1. Applying SPA

Two image processing problems under Poisson noise without back-
ground emission (i.e. b = 0d) are considered, namely image deblur-
ring with total variation (TV) prior and Laplacian prior combined
with a frame-based approach. However, note that the proposed ap-
proach can be generalized to other log-concave prior distributions.
Image deblurring with TV prior – In this approach (denoted TV
in table 1), the operators defined in Section 3.1 are K1 = P, K2 =
K3 = Id and the object to recover is the original image x ∈ Rd

+.
The matrix P is related to a Gaussian blurring kernel, hence is block-
circulant and diagonalizable in the Fourier domain. The potential
functions f1:3 are those defined in Section 2.1 with ψ corresponding
to the TV regularization function.
Frame-based synthesis approach – In this synthesis approach (de-
noted WT for wavelet transform in table 1), the operators defined in
Section 3.1 are K1 = PW, K2 = Id, K3 = W and the object to
recover is the coefficients vector β associated to a frame such that
x = Wβ. The matrix P is related to a Gaussian blurring kernel and
the columns of W are the elements of the considered frame (e.g.
wavelets or curvelets). In the sequel, the Haar wavelet frame with
four levels is used. Obviously, depending on the image processing
problem, one can consider more sophisticated frames. The potential
functions f1:3 are those defined in Section 2.1 with ψ corresponding
to the ℓ1 norm applied on β.
For these two approaches, the proximity operators associated to f1:3
can be computed using the closed-form expressions or approxima-
tions detailed in [16].

4.2. Experimental setup

The proposed approach is illustrated on three blurred and Poisson
contaminated images depicted on fig. 1. These images are of dif-
ferent sizes, have a different maximum intensity level M and are
restored using either the TV prior (TV) or using a synthesis ap-
proach with wavelets (WT), see table 1. The proposed approach
is compared with the Poisson image deconvolution by augmented
Lagrangian (PIDAL) algorithm [16] which stands for a particular in-
stance of the alternating direction method of multipliers (ADMM).
Note that the latter can be viewed as a deterministic counterpart of
the proposed approach. Although, it cannot be directly applied to
sample from (7) (see Section 2.2), the proximal MCMC algorithm
P-MYULA has also been implemented by using the Anscombe VST
and Douglas-Rachford splitting method to compute the proximity
operator of f2 + f3 when a frame-based synthesis approach is used.
Note that we consider this as an interesting side contribution of this
paper. We ran each MCMC algorithm with TMC = 105 for SPA
(resp. 106 for P-MYULA due to slower mixing properties) iterations
and 104 samples were used in both cases to approximate Bayesian
estimators. SPA parameters have been set to (ρ, α) = (1, 1) as a
trade-off between good reconstruction results and mixing proper-
ties, see [26] for more details on the choice of these two parameters.
Since the ground-truth is known in the considered experiments, the
performance of each method has been assessed using the mean abso-
lute error (MAE = d−1 ∥x̂− x∥1) and its normalized version (norm.
MAE) with respect to (w.r.t.) the intensity level M . Note that the
MAE is particularly relevant for Poissonian restoration since it is re-
lated to other distances [13,35]. For each method, these criteria have
been averaged on 10 independent runs.



Table 1. Poissonian image restoration with log-concave priors. Performance results for both optimization and simulation-based algorithms
averaged over 10 runs. For the MCMC algorithms, the MMSE estimate has been used to compute the relative and normalized MAE criteria.

PIDAL [16] P-MYULA [28] SPA [26]
image size approach M τ MAE norm. MAE MAE norm. MAE MAE norm. MAE
Saturn 256 × 256 TV 300 (Fig. 1) 0.1 2.42 0.01 3.37 0.01 3.06 0.01

neuron 128 × 128 TV
30 (Fig. 1) 1 0.89 0.03 0.99 0.03 1.45 0.05

100 1 2.83 0.03 3.10 0.03 3.35 0.03

cameraman 128 × 128 WT
30 0.1 2.25 0.08 2.11 0.07 2.93 0.10

100 0.1 6.97 0.07 5.82 0.06 6.57 0.07

255 (Fig. 1) 0.1 17.40 0.07 14.51 0.06 16.14 0.06

4.3. Results

Performance results – Table 1 shows the performance of each
method on six different experiments. The standard deviation associ-
ated to each tuple (experiment/norm. MAE) is roughly of the order
of 0.005. For MCMC algorithm the minimum mean square error
(MMSE) estimate has been used to compute MAE criteria. The re-
sults of the proposed approach are close to the two other approaches
although each method has a different target. Indeed, PIDAL derives
the maximum a posteriori (MAP) estimate associated to (7) while P-
MYULA and SPA were resorted here to compute MMSE estimates
(obviously, other Bayesian estimates can be computed). In addition,
we would like to emphasize that although SPA targets an approxi-
mate probability distribution, the approximation is controlled with
a single parameter ρ that can be made arbitrarily small, see Propo-
sition 2. On the contrary, P-MYULA suffers here from a lot of
approximations namely the absence of accept/reject step, the use
of the Anscombe VST and the Douglas-Rachford splitting scheme
to compute the proximity operator of f2 + f3 for frame-based ap-
proaches. Although the first approximation can be controlled with a
single parameter [28], the second one is not justified in all scenarios
and the last one implies an additional computational cost since it is
iterative. For information, SPA was in average at least 6 times faster
in terms of computational time than P-MYULA in the considered
experiments.

Credibility intervals – Additionally to compute pointwise Bayesian
estimates (e.g. MMSE estimate, see fig. 1), the proposed approach
has the benefit of proposing credibility intervals by exploring the
whole posterior distribution of the variable of interest x.

Thus, fig. 1 shows the 95% credibility intervals computed by
SPA for a couple of experiments. For the cameraman and Saturn
images, one can remark that the credibility intervals associated to
highly Poisson contaminated regions appear to have a noise struc-
ture. On the other hand, the range of credibility intervals associated
to the neuron image are roughly piecewise constants. This difference
is mainly due to the amount of regularization (via the parameter τ )
set for each image. Indeed, for the cameraman and Saturn image, τ
was smaller since more details were present in the image. As pointed
out by [28], we believe that simulation and optimization-based algo-
rithms should be considered together to conduct image processing
and analysis tasks. Indeed, first a quick MAP estimation can be per-
formed by optimization techniques with standard regularizers. Then,
the proposed approach can be used to conduct uncertainty quantifica-
tion, hypothesis testing or even model selection by comparing model
evidences since the potential of the target πρ,α in (8) corresponds to
an arbitrary small approximation of the initial potential function.
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Fig. 1. Original images (1st row), noisy and blurred observations
(2nd row), MMSE estimates computed with SPA (3rd row) and as-
sociated 95% credibility intervals (4th row).

5. CONCLUSION

This paper derives a novel MCMC approach to restore Poissonian
images under a log-concave prior distribution. Along with efficient
optimization-based algorithms, the proposed approach has the ben-
efit of completing the inference task by providing uncertainty quan-
tification or by performing model selection. Moreover, the proposed
approach has reasonable computation time w.r.t. optimization-based
methods thanks to the embedding of efficient proximal MCMC algo-
rithms. This work paves the way toward efficient fully Bayesian ap-
proaches for even more complicated models (e.g. Poisson-Gaussian
noise) or richer models using sophisticated regularization functions
(e.g. total generalized variation).
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