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Abstract— In this work we give a statistical model of the paths’
arrival time in the 60GHz wide band channel. This model is based
on the class of stable distributions, we show its accurateness on
modeling real data. We also give a theoretical justification of its
compatibility.

I. I NTRODUCTION

High data rate transmission in an indoor environment is
an important issue for the next generation of wireless com-
munication systems. For high data rate links (155 Mbits/s),
the spectrum around 60 GHz is an attractive solution [1]. A
massive amount of spectral space (2 to 5 GHz) has been
allocated world-wide for unlicensed, dense wireless local
communications. At this frequency, the signal is strongly at-
tenuated and the propagation characteristics are different from
microwaves since the molecules of oxygen in the atmosphere
interact with the radio wave. The peak value of the absorption
attenuation coefficient reaches about 15 dB/km at 60 GHz.
This property, which appears to be a disadvantage for wide
range radio transmission, is an advantage for indoor cellu-
lar systems. It provides an important interference reduction,
simplifying the frequency planning and allowing an efficient
use of the spectrum. Furthermore, the millimeter wave band
facilitates miniaturization of components and antennas. The
use of full monolithic microwave integrated circuit (MMIC)
transmitters and receivers will make possible the use of hand
held multimedia terminals.

However, in the case of mobile indoor radio communi-
cations, multipath propagation causes severe degradations of
the transmission quality. To solve this problem and hence
prepare the future generation of wide band indoor networks,
an accurate and flexible modelling of the channel is necessary.
This will allow realistic simulations and the optimization of
the communication chain.

The channel can be represented by a linear filter character-
ized by its impulse response. Extensive works about modelling
the impulse response was made in the literature [2], [3], [4].
The path arrival times is one difficult aspect to model. If it is
tempting to describe them in terms of a Poisson distribution,
it was shown in [5] that, in the case of 60GHz channel in
small rooms, this modelling is not accurate. Turin [1], also
observing that the Poisson hypothesis was not confirmed by
experience, showed in the case of 488, 1280 and 2980MHz

that times of arrival could be modelled by a modified Poisson
process, where the Poisson parameter changes when a path
arrives. This model was further developed by Suzuki [3] and
Hashemi [6]. It is termed the∆ k model and based on the fact
that echoes arrive in clusters, corresponding to reflections on
closely spaced buildings. Saleh and Valenzuela [4] developed
a different model in the case of the 7.5GHz indoor channel.
They also considered the clusters and introduced two arrival
time processes : one for the clusters and one for the echoes
in each cluster.

In this paper we investigate the observed data of impulse
responses collected in IEMN1 [5]. We introduce a new dis-
tribution, which can be seen as an association of several
Poisson processes, to give a new statistical model of the
impulse response, especially the arrival times : theα-stable
distributions.

In the first part we describe briefly some properties of the
stable distribution and an historical review about estimating
their parameters. In the second part we present the statistical
results of fitting the delays toα-stable distributions. In the third
section the proposition (V-A) gives a theoretical justification
of modelling the delays by stable distributions and confirms
the empirical results.

II. DESCRIPTION OF MEASUREMENT SYSTEM.

A wide band channel sounder based on the measurement of
the channel Transfer Function H(f) in the frequency domain
[7] has been developed in IEMN. The measured sampled
frequency response of the multipath radio channel is converted
into the impulse response in the time domain by taking the
inverse Fourier transform. The frequency step of 1.25 MHz
yields a maximum measurable delay of 800 ns. The frequency
span of 2 GHz yields a delay resolution of 0.5 ns. The
measurement system has been dimensioned in such a way
that the signal-to-noise ratio (SNR) at the network analyser
was not less than 10 dB. The apparatus dynamic was of 124
dB. Furthermore, a processing dynamic of 30 dB from the
strongest detected path was chosen to obtain reliable results.
A transmitted power of 10 dBm was sufficient to guarantee
this measurement quality on a TR distance that can reach 45

1Institut d’Electronique, de Micróelectronique et de Nanotechnologies



Fig. 1. measurements rooms

m. In our measurements, the environment was kept static. Only
the receiver was moved between two measurements by using
an automated positioning system that consists in a linear table
of 50 cm with a step-motor driven millimeter screw along it.
Measurement campaigns were made in rooms presented on
[fig 1] using a 60 GHz channel sounder based on a network
analyser [5, 7]. Respectively 1140 and 6500 impulse responses
were measured in the rooms.

III. ALPHA STABLE DISTRIBUTIONS

The α-stable distribution is a direct generalization of the
gaussian distribution and shares many of it’s familiar proper-
ties :

• The convolution stability property, which means that the
convolution of two stable distributions is also stable, or in
term of random variables the sum of two stable random
variables is also a stable one.

• The central limit theorem, which means that every stable
random variable may be expressed as a limit, in distribu-
tion, of a normalized sum of independents and identically
distributed random variables.

Besides, they are parametric distributions, because they are
fully described by four parameters.

Since their discovery by Paul Levy in 1925, a vast amount
of knowledge has been accumulated about the properties of
these probability distributions. On the other hand they have
been found to provide useful models for various application
fields, especially phenomena with large fluctuations and high
variability that are not compatible with the Gaussian models.

Except the Gaussian , the cauchy and the Levy distributions
which are special cases of the stable class, there is no exact
expression of the probability density function of anα−stable
distribution. However we can approximate it through its char-
acteristic function which is given by :

φ(θ) =















exp{−σα|θ|
α
(1 − iβsign(θ) tan πα

2
) + iµθ}

ifα 6= 1
exp{−σ|θ|(1 + iβ 2

π
sign(θ) ln |θ|) + iµθ}

ifα = 1
(1)

where

sign(θ) =







1 if θ > 0
0 if θ = 0

−1 if θ < 0

andα, σ, β andµ are the four parameters characterizing the
stable distribution.
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Fig. 2. the probability density function of a stable distribution withµ = 0,
σ = 1 and different values ofα andβ

• α is called the characteristic exponent (0 < α ≤ 2) : it
measures the thickness of the tail of the distribution. Thus
the larger the value ofα the less likely it is to observe
values which are far from the central location.

• µ is the location parameter (−∞ < µ < ∞) : for
instance, in an observed sample the most observations
are concentrated about its value. It corresponds to the
mean for1 < α ≤ 2 and to the median for0 < α ≤ 1

• σ is the dispersion parameter (σ > 0) : it is like the
standard error in the case of a gaussian distribution.

• β is the index of symmetry (−1 ≤ β ≤ 1) which
characterizes the dissymmetry of the density function
about its central location. Whenβ = 1 we say that the
distribution is totally skewed to the right; it is symmetric
if β = 0 .

[fig 2] presents the density function obtained for different
values of the parametersα and β and illustrates their effect
on the behavior and the form of anα-stable distribution.

In practice it is very important to estimate the parameters
of a stable distribution from an observed sample especially
the index α and the scale parameterσ. Several methods
have been proposed in the literature. Among them, max-
imum likelihood method developed by DuMouchel [8] is
asymptotically efficient but difficult to compute. Zolotarev
[9] estimates the parameters by the method of moments but
requires that the location parameter is known. McCulloch [10]
generalized the Famma and Roll [11] method to provide a
simple consistent estimator of the parameters. A characteristic
function based method was introduced by Koutrevelis [12] by
using a regression type estimation. This last method has the
importance to be easy to compute and appears to be more
accurate if no parameter is a priori known.

IV. STATISTICAL RESULTS

It was shown in [5] that, in the case of the 60GHz channel in
small rooms, modelling the delays with a Poisson distribution
is not accurate. From the different observed delays, we have
noticed an important variability in the realization of arrival
delays. We, also, observed the existence of many realization
that are considered as outliers for the usual statistical models
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Fig. 3. Box-plot of the observed delays.
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Fig. 4. Test for the infinite variance we present the partial variances of the
delays samples.

: for example the box plot in [fig 3] shows clearly this fact,
the (+) are outliers.

To confirm the high variability, we have performed the test
for infinite variance, by the method presented in [13]. As
it is shown by [fig 4], the variance of the delays may be
considered as tending towards infinity. We have also made a
kernel non parametric estimation of the densities of the delays,
we obtained a bell shape curves skewed to the right see [fig 5]
which confirms the dissymmetry remarked in the box plots.

This preliminary results show that the delays may be
approximated byα−stable random variables. To confirm the
stable approach, we have estimated the four parameters char-
acterizing the stable distribution from the delays samples using
the Koutrouvelis [12] regression type method for its simplicity
and its accurateness [14]. From this observed values we have
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Fig. 5. Examples of estimated densities of the delays by the parametric and
the non-parametric method.
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Fig. 6. clouds representing the dependence between consecutive delays

Fig. 7. example of mean delays between arrivals observed in one room.

approximated the theoretical densities and plotted them in the
same graphic with the densities obtained by the non parametric
method. Thus from the [fig 5] it is clear that theα−stable
fits well the probability distribution of the arrival times in the
60GHz channel. This fact was confirmed by a Kolmogorov-
Smirnov test performed on the observed and simulated data.

As it was first remarked, in the box plot, the means of
the observed delays are increasing see also [fig 7]. A test
of spearman shows that, in the case of indoor 60 GHz
channel, in 72.5 percent of the observed impulse responses
the delays are with independent increments. The [fig 6] shows
the existence of a linear dependence between two consecutive
delays. Assuming that the delays between paths are constant in
a given room, and motivated by its simplicity and its low cost
of computation we have adopted a linear model as follows :

Y = AX + ǫ (2)

whereY = (τ2, τ3, ....., τN ), X = (τ1, τ2, ....., τN−1), N is
the number of arrivals, andǫ is an α-stable white noise see
[fig 8] for the estimation of its parameters.A is the matrix of
the linear model parameters. Dependence between increment
could be modelled by a diagonal matrix since we supposed that
the delays are with independent increment. The estimation of
A was made by the least absolute deviation method (LAD)
(see [13] for its compatibility withα-stable models and its
consistence). The [fig 9] represent on the same graphic the
observed delays and those predicted using the linear model



Fig. 8. Exemple of theα-stable estimated parameters fitted to the residuals
of the linear model (2).
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Fig. 9. Exemples of real delays(plotted with stars) and the corresponding
predicted delays using the linear model (2)

(2). Also a spearman test reveals the linear model residuals
(ǫ1, ...., ǫN−1) are independents.

V. THEORETICAL TAIL PROBABILITY OF THE DELAYS

BETWEEN ARRIVALS

The aim of this section is to establish the theoretical proba-
bility distribution of the delays between arrivals in the impulse
response of the 60Ghz channel and hence justify the results
observed in the experimental data. Each received ray has
passed through a countable number of obstacles encountered
in the transmission environment. Each obstacle reflects it and
redirects the ray to another obstacle or eventually to the
receiver. Note that many rays may arrive at the same time
but this fact will only affect the amplitude of the signal and
not the time of arrivals.
To formulate mathematically our problem, we define : N, the
number of obstacles that a ray has effectively encountered
before arriving to the receiving antenna (N can tend towards
infinity), dk,i, the duration between the reflection on thekth

and the(k + 1)th reflectors for a given pathi. T , the total
transmission duration :T =

∑N

k=1
dk,i. If we denote byt0

the deterministic value of the first path time of arrival, theith

ray observed in the impulse response arrives with the delay :

τi =

Ni
∑

k=1

dk,i − t0. (3)

Since the numberN of reflectors encountered by a received
ray depends on the random structure and geometry of the
room, it is an integer random variable. Similarly the time to
pass from an obstacle to another one depends on the random
distribution and positions of the obstacles existing in the
environment, hence we will suppose that thedk are mutually
independents and identically distributed random variables. In
addition we suppose that they are independent ofN .

A basic assumption in our model, as well as many of the
previous models of the impulse response channel [13], is that
the number of obstacles (that a received ray has effectively
encountered in his path the receiver) is a Poisson point process
with parameter increasing with the order of arrival2. This
assumption is inspired from the fact that : in the case of static
environment, which was the case of measurements rooms :
the long time takes an arrived ray to reach the receiver, the
more likely it has followed a complicated path and hence has
encountered many obstacles. We formulate this assumption by
:

H1) : the number of encountered obstacles, by theith

arrived ray, is a Poisson random variable with parameterδα
i

where (0 < α < 2) and δi is positive number that increases
to infinity as the order of arrivali increases : more precisely
δα
i is the mean number of obstacles encountered by theith

arrived path of durationδi. The free parameterα controls
how the mean number of obstacles tends toward infinity as
time passes. It can be linked to the characteristics of the
transmission environment (for instance the disposition of the
obstacles in the room...etc).

In reality, when the number of encountered obstacles is
very large (this means that the ray follows a very complicated
path to arrive), the power of the received signal will be very
small, consequently the passage from one obstacle to another
becomes increasingly difficult. In other words, the probability
to encounter a next obstacle will decrease with the increase
of its distance from its precedent. It will also decrease with
the growth of the time passed since the first emission of the
ray. For convenience,3 we suppose the next hypothesis on the
probability distribution ofdk,i :
H2) : Suppose that the probability distribution of the delay
dk,i to pass from an obstacle to another one is given by :

P (dk,i > x) =

{

δ−α
i x−α if x > 1

δi

1 if x ≤ 1

δi
.

2Arrivals are ordered in time so saying that the order of arrival increases
means that the time passes.

3Note that we haven’t verified, physically or by experience, this two
hypothesis.



A. Proposition

Under the hypothesis (H1) and (H2) the delay time given
by ( 3 ) is a random variable verifying :

• if 0 < α < 1 the random variableτi converges in distri-
bution, asδi goes to infinity, to anα−stable distribution
totaly skewed to the right with a scale parameter given
by the formulaσα = Γ(1 − α) cos(πα

2
) > 0.

• if 1 < α < 2 then the random variableτi −
α

α−1
[ 1

δi
]1−α

converges in distribution, asδi goes to infinity, to an
α−stable distribution totaly skewed to the right with a
scale parameter verifyingσα = Γ(1 − α) cos(πα

2
) > 0.

whereΓ is the usual gamma function.
Proof is given in appendix.

B. Remarks

This proposition gives a theoretical justification for mod-
elling the delays, in the impulse response of the 60GHz chan-
nel, byα-stable distributions, and also confirms the empirical
results, and curve fitting of their distributions. As we noticed
when fitting the theoretical distribution to the measured data,
accuracy increases with the path order of arrival. This fact
can occur because the complication of the paths letδ goes
to zero and hence the sum (3) becomes stable due to this
last proposition. It also explain the right dissymmetry of the
observations about their means. The estimation of the index of
variability gives values between one and two which letδ1−α

increases slowly to infinity as delta goes to 0 which is the case
in our observed means.

VI. CONCLUSION

Channel paths’ arrival times play an important role on the
behavior of a communication system. An accurate model is
then necessary for simulation and development of communi-
cation chains. Previous models, based on Poisson processes
are difficult to generalize to new sets of measurements. We
have proposed in this paper a new approach withα-stable
distributions. In contrast of the Poisson distribution they have
four free parameters that can be adjusted to provide a good fit.
On the other hand they can be seen as a mixture of Poisson
processes which leads to a theoretical justification of their use.
Besides, we have shown a good fit between measurements
and those distributions and efficient methods exist for the
calculation of the parameters. Those distributions appear to
be a good solution for modelling the paths’ arrival times for
the 60GHz channel and could certainly be extended to new
configurations and frequency bands.

APPENDIX

Proof: For simplicity and without loss of generality
, we omit the indexi and we takeδ = 1

δi
. We will show

the proposition (V-A) when1 < α < 2. The other case
(0 < α < 1) is demonstrated in [15]. For this purpose
it suffices to show that the characteristic function of
Yδ = τ − α

α−1
δ1−α converges to the characteristic function

of an α−stable distribution. By using the condition of

independence we have :

Φδ
τ (θ) = E

[

eiθYδ

]

= E

[

exp(iθ
N

∑

k=1

dk −
α

α − 1
δ1−α)

]

= ei α

α−1
θδ1−α

E
[

[

Eeiθd1

]N
]

.

Since N is a poisson random variable with parameterδ−α so
the expectation in the second hand side of the last equality is
obtained through it’s factorial generating function, hence :

E
[

Eeiθd1

]N
= exp[δ−α(Eeiθd1 − 1)]

so,

Φδ
τ (θ) = exp [δ−α(Eeiθd1 − 1) − iθ

α

α − 1
δ1−α]

= exp[δ−α

∫

∞

−∞

(eiθζ − 1)dFδ(ζ) − iθ
α

α − 1
δ1−α]

= exp[

∫

∞

δ

α
eiθζ − 1

ζα+1
dζ − iθ

α

α − 1
δ1−α]

= exp[α

∫

∞

δ

eiθζ − 1 − iθζ

ζα+1
dζ].

As δ converges to zero, then forθ ≥ 0 the characteristic
function is equal :

Φτ (θ) = exp[α

∫

∞

0

eiθζ − 1 − iθζ

ζα+1
dζ]

by a simple integration by parts and the fact that1 < α < 2
we have :

α

∫

∞

0

eiθζ − 1 − iθζ

ζα+1
dζ = iθ

∫

∞

0

eiθζ − 1

ζα
dζ

the integral in the second hand side of the last equality is
obtained through the characteristic function of the gamma
distribution calculated in Feller [16] that is for every0 <

α < 1 andθ ≥ 0 we have :
∫

∞

0

eiθζ − 1

ζα+1
dζ = −θα Γ(1 − α)

α
e−i πα

2

which implies that in the case of1 < α < 2 and θ ≥ 0 we
have:

α

∫

∞

0

eiθζ − 1 − iθζ

ζα+1
dζ = −iθα Γ(2 − α)

(α − 1)
e−iπ α−1

2

= −|θ|α
Γ(2 − α)

(1 − α)
e−i πα

2

= −|θ|αΓ(1 − α)e−i πα

2

If θ is negative we use the fact that this last integral is equal
to the conjugate of the second hand side of the last equality,
which leads to :

Φτ (θ) = exp[−|θ|α cos(
πα

2
)Γ(1− α)[1− i sign(θ) tan(

πα

2
)]

which is nothing but the characteristic function of anα-stable
distribution totally skewed to the right with scale parameter
verifying σα = Γ(1 − α) cos(πα

2
) > 0.
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