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This paper provides optimal testing procedures for the m-sample null hypothesis of Common
Principal Components (CPC) under possibly non Gaussian and heterogenous elliptical densi-
ties. We first establish, under very mild assumptions that do not require finite moments of order
four, the local asymptotic normality (LAN) of the model. Based on that result, we show that
the pseudo-Gaussian test proposed in Hallin et al. (2010a) is locally and asymptotically optimal
under Gaussian densities. We also show how to compute its local powers and asymptotic relative
efficiencies (AREs). A numerical evaluation of those AREs, however, reveals that, while remain-
ing valid, this test is poorly efficient away from the Gaussian. Moreover, it still requires finite
moments of order four. We therefore propose rank-based procedures that remain valid under any
possibly heterogenous m-tuple of elliptical densities, irrespective of any moment assumptions—in
elliptical families, indeed, principal components naturally can be based on the scatter matrices
characterizing the density contours, hence do not require finite variances. Those rank-based
tests are not only validity-robust in the sense that they survive arbitrary elliptical population
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densities: we show that they also are efficiency-robust, in the sense that their local powers do
not deteriorate under non-Gaussian alternatives. In the homogeneous case, the normal-score
version of our tests uniformly dominates, in the Pitman sense, the optimal pseudo-Gaussian
test. Theoretical results are obtained via a nonstandard application of Le Cam’s methodology
in the context of curved LAN experiments. The finite-sample properties of the proposed tests
are investigated through simulations.

Keywords: Common Principal Components, rank-based methods, local asymptotic normality,
robustness.

1. Introduction.

Principal components—arguably, the oldest and most popular tool of multivariate ana-
lysis—were originally introduced by Pearson (1901), then rediscovered by Hotelling (1933),
in a one-sample context. Multisample principal component problems only came much
later, when Flury (1984) introduced the Common Principal Components (CPC) model.
CPC models since then have been used in a number of applications, mainly in a biometric
context (see e.g. Airoldi and Hoffmann (1984), Flury and Riedl (1988)). Under such a
model, m ≥ 2 populations of dimension k, with covariance matrices ΣΣΣCov

i , i = 1, . . . , m,
are assumed to share, with possibly different eigenvalues, the same principal components:
namely, these covariance matrices factorize into ΣΣΣCov

i = βββΛΛΛCov

i βββ′ for some m-tuple of pos-
itive diagonal matrices ΛΛΛCov

i , i = 1, . . . , m, and some orthogonal matrix βββ—the matrix of
common eigenvectors, which does not depend on i and characterizes the common prin-
cipal components. CPC models later on have been generalized (Flury 1988) into partial
CPC models, in which only a subset of q < k principal components are common to the m
populations. More recently, a broader class of models, which includes CPC and partial
CPC, but also possible common eigenspaces, has been considered by Boik (2002).

Before considering a statistical analysis based on such model, however, it is natural to
check whether the CPC assumption is compatible with the data under study. Flury (1984)

therefore developed a Gaussian likelihood ratio test φ
(n)
N for the null hypothesis H0 of

common principal components. This test is based on the asymptotically chi-square null

distribution of −2 logΛ where, denoting by S
(n)
i , i = 1, . . . , m the empirical covariance

matrices computed from m mutually independent samples of k-dimensional independent
observations and by β̂ββ the (constrained) maximum likelihood estimator of βββ,

Λ :=
m∏

i=1

(
det(β̂ββ

′
S

(n)
i β̂ββ)

det(diag(β̂ββ
′
S

(n)
i β̂ββ))

)ni/2

(1.1)

(we write diag(A) for the diagonal matrix having the same diagonal elements as a

squared matrix A). Under H0, β̂ββ
′
S

(n)
i β̂ββ should be nearly diagonal, hence det(β̂ββ

′
S

(n)
i β̂ββ)

and det(diag(β̂ββ
′
S

(n)
i β̂ββ)) approximately equal, in which case Λ is close to one; under the

alternative, Λ is closer to zero (hence, −2 logΛ is large), leading to the rejection of the
CPC hypothesis. The asymptotically chi-square distribution of −2 logΛ follows from the
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classical asymptotic result of Wilks (1938), a result which, however, is valid under Gaus-
sian assumptions only.

It is well known that Gaussian likelihood ratio tests (LRT) for hypotheses involving
covariance matrices, are quite sensitive to violations of Gaussian assumptions and to the
presence of outliers (on this latter point, see e.g. Boente and Orellana (2001)). The test
based on (1.1) is no exception to that rule: −2 logΛ under non-Gaussian densities is
no longer asymptotically chi-square, but converges in distribution to a weighted sum of
independent chi-square variables.

This type of asymptotic behavior is not uncommon, and there exists an extensive
literature on how to preserve the chi-square asymptotics of LRT statistics: Muirhead
and Waternaux (1980), Browne (1984), Satorra and Bentler (1988), Bentler and Dun-
geon (1996), provide adjusted LRTs for various problems. Shapiro and Browne (1987)
give a necessary and sufficient condition under which such adjusted test statistics remain
asymptotically chi-square.

Using this result by Shapiro and Browne, Boik (2002) constructs a test—φ
(n)
Boik, say—

for the null hypothesis of CPC based on a statistic which remains asymptotically chi-
square under families of elliptical distributions with finite fourth-order moments and
common kurtosis parameter. That is, denoting by κk(gi) the kurtosis in the ith elliptical
distribution, i = 1, . . . , m (see Section 6 for a precise definition), the validity of this test
requires the somewhat stringent assumption of homokurticity κk(g1) = . . . = κk(gm).

In a series of papers, Boente et al. (2001, 2002, and 2009) generalize Boik’s test by
substituting robust scatter matrices for the regular covariance matrices, which reduces
the impact of possible outliers. In terms of validity robustness, however, the resulting tests
do not improve much on Boik’s, as they merely replace the assumption of homokurticity
with an assumption of the form ς(g1) = . . . = ς(gm), where the parameter ς(g) depends
on the chosen concept of scatter—a homogeneity assumption that is hardly more natural
or realistic than Boik’s homokurticity assumption.

Hallin et al. (2010a) amend this situation by introducing a pseudo-Gaussian test φ
(n)
HPV

the validity of which, unlike that of φ
(n)
N and φ

(n)
Boik, resists heterokurtic violations of

Gaussian assumptions. Under Gaussian densities, this test is asymptotically equivalent

to Flury’s LRT. However, φ
(n)
HPV still requires finite fourth-order moments, and follows as

a robustified version of Flury’s LRT φ
(n)
N , the exact optimality properties of which have

not been investigated so far. These issues (certainly, the fourth-order moment assump-
tion) are not dramatic, and most statisticians would feel comfortable using such tests.

Unfortunately, it appears from the power analysis in Sections 8.1 and 8.2 below that φ
(n)
HPV

exhibits disturbingly low power against non-Gaussian alternatives. In the two-population
case with bivariate t5 densities (homokurtic case with finite fourth-order moments), the

asymptotic relative efficiency of φ
(n)
HPV with respect to the locally optimal procedure is as

low as .4286, whereas the normal-score (van der Waerden) test we are proposing here
achieves asymptotic relative efficiency .9446—more than twice as much. Under t4.2 densi-
ties, the figures are .1202 and .9303, respectively! It seems, thus, that the robustification

of φ
(n)
N into φ

(n)
HPV is obtained at the expense of efficiency—which, most statisticians will
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agree, is quite a heavy price.
The objective of this paper is to remedy those validity and efficiency problems by

proposing rank-based tests that outperform the available parametric ones on both counts.
These rank tests enjoy enhanced validity properties; in particular, they allow for het-
erokurticity and do not require any moment assumptions at all. In the same time, they
exhibit increased efficiency-robustness: see Tables 1 and 2. The asymptotic relative effi-

ciencies of the van der Waerden version of our tests with respect to φ
(n)
HPV, for instance,

are uniformly larger than one—a theoretical finding that is supported by the simulation
results of Section 8.2.

Reaching that double objective requires overcoming several technical difficulties. First,
the traditional covariance-based concept of common principal components has to be ex-
tended in order to cope with the possible absence of second-order moments. In elliptical
families, the scatter and shape matrices that characterize the elliptical equidensity con-
tours quite naturally qualify as moment-free substitutes for covariance matrices (with
which they coincide, up to a scalar factor, in case second-order moments do exist). Sec-
ond, based on a parametrization involving those scatter and shape matrices, we establish
the local asymptotic normality (LAN) of the model in the vicinity of the CPC hypothe-
sis. This provides us with a clear definition of optimality, and a way of computing local
powers and asymptotic relative efficiencies—with, however, the additional difficulty that
the limiting local experiments associated with the scatter- or shape-matrix parametriza-
tion are not full-rank Gaussian shift experiments but curved ones. Such curved LAN
structures were previously studied in Hallin et al. (2010b). As a by-product, we establish

the exact optimality properties of Flury’s φ
(n)
N and Hallin et al.’s φ

(n)
HPV. Finally, following

the method used in Hallin et al. (2010b) for the one-sample case, we construct rank-
based versions of the optimal test statistics associated with various radial densities, and
compute the corresponding local powers and asymptotic relative efficiencies.

2. Outline of the paper.

The outline of the paper is as follows. Section 3 states the assumptions to be used in the
sequel. The parametrization we propose for testing the CPC hypothesis in an elliptical
context is described in Section 4. Section 5 provides the uniform local and asymptotic
(ULAN) property, on which the construction of optimal tests will be based. Section 6
derives Gaussian and pseudo-Gaussian tests for the CPC hypothesis, and Section 7 in-
troduces optimal rank-based tests for the same. In Section 8, the performances of the
proposed tests are investigated both in terms of asymptotic relative efficiencies (Sec-
tion 8.1) and simulations (Section 8.2). Finally, the Appendix collects technical proofs.

3. Main assumptions.

For the sake of convenience, we are collecting here the main assumptions to be used in
the sequel.
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3.1. Elliptical symmetry

Denote by (Xi1, . . . ,Xini), i = 1, . . . , m a collection of m mutually independent samples
of i.i.d. k-dimensional random vectors with elliptically symmetric densities. More pre-
cisely, the ni observations Xij , j = 1, . . . , ni in sample i are independent, with density

fi(x) := ck,fi (det(ΣΣΣi))
−1/2 fi

(
((x − θθθi)

′ΣΣΣ−1
i (x − θθθi))

1/2
)
, (3.1)

for some k-dimensional location parameter θθθi, some symmetric and positive definite scat-
ter matrix ΣΣΣi and some radial density function fi : R

+
0 7→ R

+; ck,fi is a normalization
constant such that

∫
Rk fi(x)dx = 1. Note that, despite the terminology, the radial den-

sity fi is not a probability density (over the positive real line), since it does not integrate
to one; but f̃i := µ−1

k−1;fi
rk−1fi (for the sake of simplicity, we write f̃i instead of f̃ik),

where µℓ;f :=
∫∞

0
rℓf(r) dr, is. Define

F :=
{
f : f(r) > 0 a.e. and µk−1;f < ∞

}
and F1 :=

{
f ∈ F :

1

µk−1;f

∫ 1

0

rk−1f(r) dr =
1

2

}
;

F1 is a class of standardized radial densities, in the sense that, for any radial density f ∈
F1, the probability density f̃(r) := µ−1

k−1;f rk−1f(r) is a properly standardized probability
density. By “standardized”, here, we mean that the corresponding median is one; the
median, for a nonvanishing density over R

+
0 , indeed, is a scale parameter which does not

require any moment conditions.
Summarizing this, we throughout assume that the following assumption holds true.

Assumption (A). The observations Xij , j = 1, . . . , ni, i = 1, . . . , m are mutually in-
dependent, with probability densities fi given in (3.1), for some m-tuple of (possibly
distinct) radial densities f := (f1, . . . , fm) ∈ (Fa)m, where Fa ⊂ F1 is defined below.

Under Assumption (A), the elliptical distances dij(θθθi,ΣΣΣi) := ‖ΣΣΣ−1/2
i (Xij − θθθi)‖, j =

1, . . . , ni, i = 1, . . . , m, have probability density f̃i, with median one, which identifies
the scatter matrices ΣΣΣi, i = 1, . . . , m also in the absence of any moments. Under finite
second-order moments, however, ΣΣΣi is proportional to the covariance matrix ΣΣΣCov

i of Xij .
Assumption (A) allows for heterogeneity of the m elliptical densities, that is, we may
have fi 6= fi′ for i 6= i′. Classical examples are the k-variate multinormal distributions,
with standardized radial densities fi(r) = φ(r) := exp(−akr2/2), the k-variate Student
distributions, with standardized radial densities (for ν ∈ R

+
0 degrees of freedom) fi(r) =

f t
ν(r) := (1 + ak,νr2/ν)−(k+ν)/2, and the k-variate power-exponential distributions, with

standardized radial densities of the form fi(r) = fe
η (r) := exp(−bk,ηr2η), η ∈ R

+
0 ; the

positive constants ak, ak,ν , and bk,η are such that fi ∈ F1.
The equidensity contours associated with (3.1) are hyper-ellipsoids centered at θθθi, the

shape and orientation of which are determined by the scatter matrix ΣΣΣi. The multivari-

ate signs Uij(θθθi,ΣΣΣi) := ΣΣΣ
−1/2
i (Xij − θθθi)/dij(θθθi,ΣΣΣi) and standardized radial distances

dij(θθθi,ΣΣΣi) just defined are Xij ’s (within-group) elliptical coordinates associated with

those ellipsoids. The observations then decompose into Xij = θθθi + dijΣΣΣ
1/2
i Uij , where
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the Uij ’s, j = 1, . . . , ni, i = 1, . . . , m are i.i.d. uniform over the unit sphere in R
k, and

the dij ’s are i.i.d., independent of the Uij ’s, with standardized probability density f̃i over

R
+ and distribution function F̃i. In the sequel, the notation g̃i and G̃i will be used for

the same functions computed from a standardized radial density gi(∈ F1).
The derivation of locally and asymptotically optimal tests at a given m-tuple

f = (f1, . . . , fm) of radial densities will be based on the uniform local and asymptotic
normality (ULAN) of the corresponding model. This ULAN property only holds under
some mild regularity conditions on the fi’s. More precisely, ULAN (see Proposition 5.1
below) requires the fi’s to belong to the collection Fa of those radial densities f ∈ F1

which are absolutely continuous, with almost everywhere derivative ḟ such that, letting
ϕf := −ḟ/f and denoting by F̃ the distribution function associated with f̃ , the integrals

Ik(f) :=

∫ 1

0

ϕ2
f (F̃−1(u)) du and Jk(f) :=

∫ 1

0

ϕ2
f (F̃−1(u))(F̃−1(u))2 du

are finite. The quantities Ik(fi) and Jk(fi) play the roles of radial Fisher information
for location and shape/scale, respectively, in sample i, i = 1, . . . , m (see Hallin and
Paindaveine 2006).

3.2. Asymptotic behavior of sample sizes.

Actually, we throughout consider triangular arrays of observations, of the form

(X
(n)
11 , . . . ,X

(n)

1n
(n)
1

,X
(n)
21 , . . . ,X

(n)

2n
(n)
2

, . . . ,X
(n)
m1, . . . ,X

(n)

mn
(n)
m

),

indexed by the total sample size n :=
∑m

i=1 n
(n)
i , where the sequences n

(n)
i satisfy the

following assumption.

Assumption (B). For all i = 1, . . . , m, ni = n
(n)
i → ∞ as n → ∞.

This assumption is weaker than the assumption usually made in (univariate or multi-

variate) multisample problems, where it is required that n
(n)
i /n be bounded away from 0

and 1 for all i as n → ∞. Letting r
(n)
i := n

(n)
i /n, it is easy to check that Assumption (B)

is actually equivalent to the Noether conditions

max

(
1 − r

(n)
i

r
(n)
i

,
r
(n)
i

1 − r
(n)
i

)
= o(n) as n → ∞, for all i.

However, in the derivation of asymptotic distributions under local alternatives, we will
need—mainly, for notational comfort—the following classical reinforcement:

Assumption (B′). For all i = 1, . . . , m, r
(n)
i → ri ∈ (0, 1), as n → ∞.

For notational simplicity, we henceforth omit superfluous (n) superscripts.
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3.3. Score functions.

The signed-rank tests considered in Section 6 are based on m-tuples K = (K1, . . . , Km)
of score functions, which we assume to satisfy the following regularity conditions.

Assumption (C). For any i = 1, . . . , m, the mapping (from (0, 1) to R) u 7→ Ki(u)

(C1) is continuous and square-integrable;
(C2) can be expressed as the difference of two monotone increasing functions, and

(C3) satisfies
∫ 1

0 Ki(u) du = k.

Assumption (C3) is a normalization constraint that is automatically satisfied by the
score functions Ki(u) = Kfi(u) := ϕfi(F̃

−1
i (u))F̃−1

i (u) leading to local and asymptotic
optimality at m-tuples of radial densities f = (f1, . . . , fm) for which ULAN holds; see
Section 5.

For score functions K, K1, K2 satisfying Assumption (C), let (throughout, U stands
for a random variable uniformly distributed over (0, 1)), Jk(K1, K2) := E[K1(U)K2(U)].
For simplicity, we write Jk(K) for Jk(K, K), Jk(K, f) for E[K(U)Kf(U)], etc.

The power score functions Ka(u) := k(a + 1)ua (a ≥ 0) provide some traditional
score functions satisfying Assumption (C), with Jk(Ka) = k2(a + 1)2/(2a + 1): the
Laplace, Wilcoxon and Spearman scores are obtained for a = 0, 1, and 2, respectively.
As for score functions of the form Kfi , an important particular case is that of van der
Waerden or normal scores, obtained for fi = φ. Then, denoting by Ψk the chi-square
distribution function with k degrees of freedom, Kφ(u) = Ψ−1

k (u), and Jk(φ) = k(k +2).
Similarly, writing Gk,ν for the Fisher-Snedecor distribution function with k and ν degrees
of freedom, Student densities fi = f t

ν yield

Kft
ν
(u)=

k(k + ν)G−1
k,ν(u)

ν + kG−1
k,ν(u)

and Jk(f t
ν)=

k(k + 2)(k + ν)

k + ν + 2
.

4. Parametrization of m-sample elliptical models.

A natural notation for the joint distribution of the n-tuple (X′
11, . . . ,X

′
mnm

)′ under
Assumption (A), parameter values θθθ1, . . . , θθθm, ΣΣΣ1, . . . ,ΣΣΣm, and the m-tuple f of radial

densities, is P
(n)
θθθ1,...,θθθm;ΣΣΣ1,...,ΣΣΣm;f . Such parametrization, however, is not well adapted to

the present context, due to the fact that eigenvectors and eigenvalues are complicated
functions of the scatter matrices. As in Hallin et al. (2010b), a parametrization based on
eigenvectors and eigenvalues, which we now describe, will prove much more adequate.

4.1. Scatter, scale, and shape.

Since the eigenvectors βββ(1), . . . ,βββ(m) of ΣΣΣ1, . . . ,ΣΣΣm are scale-free functions of the ΣΣΣi’s,
it is appropriate to first decompose each ΣΣΣi into a product ΣΣΣi = σ2

i Vi, where σi is a
scalar global scale parameter and Vi a shape matrix (see Hallin and Paindaveine (2006)
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for details) for sample i. Paindaveine (2008) has shown the advantages of doing so by
defining σ2

i as (detΣΣΣi)
1/k. This definition, which we adopt here, implies that the eigen-

values λVij of the shape matrices Vi are such that
∏k

j=1 λVij = 1 for all i = 1, . . . , m;
clearly, Vi and ΣΣΣi share the same eigenvectors.

4.2. Shape eigenvalues and eigenvectors.

Shape matrices in turn factorize into Vi = βββ(i)′ΛΛΛV

i βββ(i), with ΛΛΛV

i := diag(λVi1, . . . , λ
V

ik)
(throughout diag(B1,B2, . . . ,Bm) stands for the block-diagonal matrix with diagonal
blocks B1, B2, . . . ,Bm). Even in case the λVij ’s are all distinct, this factorization, due

to possible permutations of eigenvalues and the columns of βββ(i), is not unique, and it
is usually imposed, without any loss of generality, that the diagonal elements of ΛΛΛV

i are
ranked in decreasing order of magnitude, which provides each eigenvalue λVij and the

corresponding eigenvector βββ
(i)
j with a well-defined label j.

That way of labeling eigenvalues and eigenvectors is used in the statement of ULAN
in Section 5 below. The same labeling however is no longer adequate when describing
the null hypothesis H0 of CPC. The existence of a common βββ indeed induces a matching
between the eigenvalues of the various populations, and it would be natural to label them
so that λVi1, for i = 1, . . . , m be associated with βββ’s first column βββ1, λVi2, i = 1, . . . , m

with βββ2, etc. Under such labeling, H0 would take the simple form βββ(1) = . . . = βββ(m)

instead of “there exist (m − 1) permutation matrices MΠ
2 , . . . ,MΠ

m such that βββ(1) =

MΠ
2 βββ(2) = . . . = MΠ

mβββ(m) =: βββ ”. This βββ-induced labeling, however, only exists under H0,
and, being βββ-dependent, only holds over a neighborhood of βββ; hence, it is local. We
therefore adopt the “traditional” labeling in the statement of ULAN, and switch to the
local βββ-induced labels when optimal tests are to be derived (these tests, typically, will

involve the ordering of eigenvalues induced by some adequate estimator β̂ββ).

Establishing ULAN for a parametrization involving eigenvector matrices βββ(i) and
eigenvalues ΛΛΛV

i requires a differentiable correspondence between the Vi’s and the corre-

sponding (βββ(i),ΛΛΛV

i )’s. Therefore, we need the following assumption.

Assumption (D). For all i = 1, . . . , m, the scatter ΣΣΣi (equivalently, the shape Vi) has
k distinct eigenvalues: λΣΣΣ

i1 > . . . > λΣΣΣ
ik.

While ULAN indeed requires Assumption (D), the tests we will propose, as we will
show, remain (asymptotically) valid under the weaker

Assumption (D′). For any 1 ≤ j 6= j′ ≤ k, there exists i ∈ {1, . . . , m} such that
λΣΣΣ

ij 6= λΣΣΣ
ij′ .

Now, under the null and Assumption (D′), the matrix βββ := (βββ1, . . . ,βββk) of common
eigenvectors is identified up to an arbitrary permutation of its columns (we still forget
about the irrelevant sign changes of the βββj ’s). However, it is easy to fix an ordering,

hence to make the βββj ’s—hence also the corresponding λΣΣΣ
ij ’s—(individually) identifiable.
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For instance, one can require that λΣΣΣ
11 ≥ λΣΣΣ

12 ≥ . . . ≥ λΣΣΣ
1k(> 0), and that, for any

sequence of the form λΣΣΣ
1j = λΣΣΣ

1,j+1 = . . . = λΣΣΣ
1,j+ℓ, one has λΣΣΣ

2j ≥ λΣΣΣ
2,j+1 ≥ . . . ≥ λΣΣΣ

2,j+ℓ.

Recursively, if further ties occur among those λΣΣΣ
2,j ’s, the ranking can be based on the way

the λΣΣΣ
3,j ’s are ordered, etc. Clearly, Assumption (D′) ensures that this correctly defines a

unique ordering of the common principal directions and corresponding eigenvalues. Note
that the largest eigenspace common to ΣΣΣ1, . . . ,ΣΣΣm (equivalently, to V1, . . . ,Vm) then
has dimension less than or equal to one.

4.3. Parameter space.

The parametrization we are adopting in the sequel is similar to that considered in the
one-sample case by Hallin et al. (2010b); it is based on the L := mk(k + 2)-dimensional
vector (we denote by dvec (A) =: (A11, (dv

◦

ec (A))′)′ the vector obtained by stacking the
diagonal elements of a squared matrix A)

ϑϑϑ := (ϑϑϑ′
I ,ϑϑϑ

′
II ,ϑϑϑ

′
III ,ϑϑϑ

′
IV )′

:= (θθθ′1, . . . , θθθ
′
m, σ2

1 , . . . , σ
2
m, (dv

◦

ecΛΛΛV

1 )′, . . . , (dv
◦

ecΛΛΛV

m)′, (vecβββ(1))′, . . . , (vecβββ(m))′)′,

where θθθi and σ2
i are the location and scale parameters, ΛΛΛV

i := diag(λVi1, . . . , λ
V

ik) and βββ(i)

the shape eigenvalue and eigenvector matrices, respectively, in population i, i = 1, . . . , m;
the reason why λVi1 is omitted in the parametrization is that, Vi being a shape ma-
trix, λVi1 = 1/

∏m
j=2 λVij . The parameter space is thus ΘΘΘ := R

mk × (R+
0 )m × (Ck−1)m ×

(vec (SOk))m, where Ck−1 is the open cone of (R+
0 )k−1 with strictly ordered (from largest

to smallest) coordinates, and SOk stands for the class of k × k real orthogonal matri-
ces with determinant one. Note that Assumption (D) is explicitly incorporated in the
definition of ΘΘΘ.

We denote by P
(n)
ϑϑϑ;f or P

(n)
ϑϑϑI ,ϑϑϑII ,ϑϑϑIII ,ϑϑϑIV ;f the joint distribution of the n observations under

parameter value ϑϑϑ and standardized radial densities f = (f1, . . . , fm).

5. Uniform local asymptotic normality (ULAN).

As mentioned in Section 1, we plan to construct tests that are optimal at correctly spec-
ified densities, in the sense of Le Cam’s asymptotic theory of statistical experiments. In
this section, we state the ULAN result (with respect to ϑϑϑ ∈ ΘΘΘ, for fixed radial densi-
ties f = (f1, . . . , fm)) on which optimality will be based. Denote by

ϑϑϑ(n) := (ϑϑϑ(n)′
I

,ϑϑϑ(n)′
II

,ϑϑϑ(n)′
III

,ϑϑϑ(n)′
IV

)′ := (θθθ
(n)′
1 , . . . , θθθ(n)′

m ,

σ
2(n)
1 , . . . , σ2(n)

m , (dv
◦

ecΛΛΛ
V(n)
1 )′, . . . , (dv

◦

ecΛΛΛV(n)
m )′, (vecβββ(1),(n))′, . . . , (vecβββ(m),(n))′)′

a local sequence such that ϑϑϑ(n)∈ ΘΘΘ and ϑϑϑ(n)−ϑϑϑ= O(n−1/2). Letting

r(n) := diag((r
(n)
1 )−1/2, . . . , (r(n)

m )−1/2)
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(see Section 3.2), define

ςςς(n) := diag
(
ςςς
(n)
I , ςςς

(n)
II , ςςς

(n)
III , ςςς

(n)
IV

)
:= diag

(
r(n) ⊗ Ik, r(n), r(n) ⊗ Ik−1, r

(n) ⊗ Ik2

)
(5.1)

and consider further sequences of the form ϑϑϑ(n) + n−1/2ςςς(n)τττ (n), where

τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′

= (t
(n)′
1 , . . . , t(n)′

m , s
(n)
1 , . . . , s(n)

m , l
(n)′
1 , . . . , l(n)′

m , (vecb(1),(n))′, . . . , (vecb(m),(n))′)′

is such that supn τττ (n)′τττ (n) < ∞ and ϑϑϑ(n) + n−1/2ςςς(n)τττ (n) ∈ ΘΘΘ. Under Assumption (B′),
we also write ςςς for limn→∞ ςςς(n).

Strong restrictions are imposed on τττ (n) = (τττ
(n)′
I , τττ

(n)′
II , τττ

(n)′
III , τττ

(n)′
IV )′ in order for the per-

turbed parameter values ϑϑϑ(n)+n−1/2ςςς(n)τττ (n) to belong to ΘΘΘ. In particular, the perturbed
orthogonal matrices should remain orthogonal; we refer to Hallin et al. (2010b) for details.

The statement of ULAN in Proposition 5.1 below still requires some additional no-
tation. Write V⊗2 for the Kronecker product V ⊗ V. Denoting by eℓ the ℓth vector of
the canonical basis of R

k, let Kk :=
∑k

i,j=1(eie
′
j) ⊗ (eje

′
i) be the classical (k2 × k2)

commutation matrix. Define Hk as the k × k2 matrix such that Hkvec (A) = dvec (A)
for any k × k matrix A. For any k × k diagonal matrix ΛΛΛ = diag(λ1, λ2, . . . , λk),

write MΛΛΛ
k for the (k − 1) × k matrix

(
− λ1(λ

−1
2 , . . . , λ−1

k )′
... Ik−1

)
and L

βββ(i),ΛΛΛV

i

k for

(L
βββ(i),ΛΛΛV

i

k;12 L
βββ(i),ΛΛΛV

i

k;13 . . .L
βββ(i),ΛΛΛV

i

k;(k−1)k)′, with L
βββ(i),ΛΛΛV

i

k;jh := (λVih − λVij)(βββ
(i)
h ⊗ βββ

(i)
j ). Finally, let

G
βββ(i)

k := (Gβββ(i)

k;12 G
βββ(i)

k;13 . . .Gβββ(i)

k;(k−1)k), with G
βββ(i)

k;jh := ej ⊗ βββ
(i)
h − eh ⊗ βββ

(i)
j , and ννν(i) :=

diag(ν
(i)
12 , ν

(i)
13 , . . . , ν

(i)
(k−1)k) with ν

(i)
jh := λVijλ

V

ih/(λVij − λVih)2. We then have the following

ULAN result.

Proposition 5.1. Let Assumptions (A) (with f = (f1, . . . , fm) ∈ (Fa)m), (B) and (D)

hold. Then, the family P(n)
f :=

{
P

(n)
ϑϑϑ;f |ϑϑϑ ∈ ΘΘΘ

}
is ULAN, with central sequence

∆∆∆ϑϑϑ;f = ∆∆∆
(n)
ϑϑϑ;f :=

(
∆∆∆

I(n)′
ϑϑϑ;f , ∆∆∆

II(n)′
ϑϑϑ;f , ∆∆∆

III(n)′
ϑϑϑ;f , ∆∆∆

IV (n)′
ϑϑϑ;f

)′
,

∆∆∆I

ϑϑϑ;f =




∆∆∆I,1
ϑϑϑ;f1

...
∆∆∆I,m

ϑϑϑ;fm


 , ∆∆∆II

ϑϑϑ;f =




∆II,1
ϑϑϑ;f1

...
∆II,m

ϑϑϑ;fm


 , ∆∆∆III

ϑϑϑ;f =




∆∆∆III,1
ϑϑϑ;f1

...
∆∆∆III,m

ϑϑϑ;fm


, ∆∆∆IV

ϑϑϑ;f =




∆∆∆IV ,1
ϑϑϑ;f1

...
∆∆∆IV ,m

ϑϑϑ;fm


,

where (with dij = dij(θθθi,Vi) and Uij = Uij(θθθi,Vi))

∆∆∆I,i
ϑϑϑ;fi

:=
1√
niσi

ni∑

j=1

ϕfi

(
dij

σi

)
V

−1/2
i Uij , ∆II,i

ϑϑϑ;fi
:=

1

2
√

niσ2
i

ni∑

j=1

(
ϕfi

(
dij

σi

)
dij

σi
− k

)
,

∆∆∆III,i
ϑϑϑ;fi

:=
1

2
√

ni
M

ΛΛΛV

i

k Hk

(
(ΛΛΛV

i )−1/2βββ(i)′
)⊗2 ni∑

j=1

vec

(
ϕfi

(
dij

σi

)
dij

σi
UijU

′
ij

)
,
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∆∆∆IV ,i
ϑϑϑ;fi

:=
1

2
√

ni
G

βββ(i)

k L
βββ(i),ΛΛΛV

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

vec

(
ϕfi

(
dij

σi

)
dij

σi
UijU

′
ij

)
,

i = 1, . . . , m, and with block-diagonal information matrix

ΓΓΓϑϑϑ;f := diag(ΓΓΓI

ϑϑϑ;f ,ΓΓΓ
II

ϑϑϑ;f ,ΓΓΓ
III

ϑϑϑ;f ,ΓΓΓ
IV

ϑϑϑ;f), (5.2)

where ΓΓΓI

ϑϑϑ;f = diag(ΓΓΓI,1
ϑϑϑ;f1

, . . . ,ΓΓΓI,m
ϑϑϑ;fm

), ΓΓΓII

ϑϑϑ;f = diag(ΓII,1
ϑϑϑ;f1

, . . . ,ΓII,m
ϑϑϑ;fm

), ΓΓΓIII

ϑϑϑ;f = diag(ΓΓΓIII,1
ϑϑϑ;f1

, . . . ,ΓΓΓIII,m
ϑϑϑ;fm

),

and ΓΓΓIV

ϑϑϑ;f = diag(ΓΓΓIV ,1
ϑϑϑ;f1

, . . . ,ΓΓΓIV ,m
ϑϑϑ;fm

), with

ΓΓΓI,i
ϑϑϑ;fi

:=
Ik(fi)

kσ2
i

V−1
i , ΓII,i

ϑϑϑ;fi
:=

Jk(fi) − k2

4σ4
i

,

ΓΓΓIII,i
ϑϑϑ;fi

:=
Jk(fi)

4k(k + 2)
M

ΛΛΛV

i

k Hk((ΛΛΛV

i )−1)⊗2 [Ik2 + Kk]H′
k(M

ΛΛΛV

i

k )′,

and

ΓΓΓIV ,i
ϑϑϑ;fi

:=
Jk(fi)

4k(k + 2)
G

βββ(i)

k (ννν(i))−1
(
G

βββ(i)

k

)′
.

More precisely, for any ϑϑϑ(n) = ϑϑϑ + O(n−1/2) and any bounded sequence τττ (n), we have,

under P
(n)

ϑϑϑ(n);f
,

Λ
(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ(n)/ϑϑϑ(n);f
:= log

(
dP

(n)

ϑϑϑ(n)+n−1/2ςςς(n)τττ (n);f
/dP

(n)

ϑϑϑ(n);f

)

= (τττ (n))′∆∆∆
(n)

ϑϑϑ(n);f
− 1

2
(τττ (n))′ ΓΓΓϑϑϑ;fτττ

(n) + oP(1)

and ∆∆∆ϑϑϑ(n);f
L−→ N (0,ΓΓΓϑϑϑ;f), as n → ∞.

Proposition 5.1, which is the multi-sample version of Theorem 2.1 in Hallin et al. (2010b),
is the key result for constructing optimal inference procedures for eigenvectors and eigen-
values in multisample elliptical families. However, the standard methods for defining lo-
cally and asymptotically optimal tests under ULAN, which are based on the fact that
local experiments converge to Gaussian shift experiments, do not apply here. Indeed, the
parameter space ΘΘΘ is a nonlinear manifold of R

L (since (vec (SOk))m is a nonlinear man-

ifold of R
mk2

). Just as in the one-sample situation, local limiting experiments therefore
are curved Gaussian experiments. The problem of constructing optimal tests for difer-
entiable hypotheses in curved experiments has been considered in Hallin et al. (2010b),
where general results are provided, which we apply in the present situation.

Consider a parameter value ϑϑϑ0 satisfying H0 for some common eigenvector matrix βββ.
As explained in Section 4.2, βββ′

Viβββ =: ΛΛΛV;βββ
i , in general, is a reordered version of ΛΛΛV

i ,

since the eigenvalues in ΛΛΛV

i are ranked in decreasing order of magnitude but not neces-

sarily so in the locally βββ-reordered (we also call it ϑϑϑ0-reordered) ΛΛΛV;βββ
i . At ϑϑϑ0, the locally
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reordered ΛΛΛV;βββ
i is a much more natural parameter than the original ΛΛΛV

i . In that local
reparametrization, the null hypothesis H0 of CPC actually consists of the intersection of
the nonlinear manifold ΘΘΘ and the linear one C := R

mk×(R+
0 )m×(Ck−1)

m×M(1m⊗Ik2),
where M(A) stands for the vector space spanned by the columns of A.

Proposition 3.2 in Hallin et al. (2010b) on locally and asympotically optimal tests
for differentiable hypotheses in curved ULAN experiments imply that, in the present
context, a most stringent (at ϑϑϑ0 = (ϑϑϑ′

I
,ϑϑϑ′

II
,ϑϑϑ′

III
,1′

m⊗(vec (βββ))′)′) test for H0 can be based
on the quadratic form provided by the “classical” most stringent test for the (linear) null
hypothesis consisting of the intersection of C and the tangent space to ΘΘΘ at ϑϑϑ0. That
intersection, still in the vicinity of ϑϑϑ0, reduces to








ϑϑϑI + n−1/2ςςς
(n)
I τττ

(n)
I

ϑϑϑII + n−1/2ςςς
(n)
II τττ

(n)
II

ϑϑϑIII + n−1/2ςςς
(n)
III τττ

(n)
III

vec (βββ + n−1/2(r
(n)
1 )−1/2b(1),(n))
...

vec (βββ + n−1/2(r
(n)
m )−1/2b(m),(n))




such that βββ′
b(i),(n) + (b(i),(n))′βββ = 0, i = 1, . . . , m

and (r
(n)
1 )−1/2b(1),(n) = . . . = (r

(n)
m )−1/2b(m),(n)






.

Solving this system leads to

ςςς
(n)
IV τττ

(n)
IV =

(
(r

(n)
1 )−1/2(vecb(1),(n))′, . . . , (r(n)

m )−1/2(vecb(m),(n))′
)′ ∈ M(ΨΨΨ),

with

ΨΨΨ := 1m ⊗




Ik − βββ1βββ
′
1 −βββ2βββ

′
1 . . . −βββkβββ

′
1

−βββ1βββ
′
2 Ik − βββ2βββ

′
2

. . .
...

...
. . .

. . . −βββkβββ
′
k−1

−βββ1βββ
′
k . . . −βββk−1βββ

′
k Ik − βββkβββ

′
k




,

where βββℓ denotes βββ’s ℓth column. Hence, the null hypothesis of CPC, locally at ϑϑϑ0, takes
the form ςςς(n)τττ (n) ∈ M(ΥΥΥ), where

ΥΥΥ := diag
(
ΥΥΥI ,ΥΥΥII ,ΥΥΥIII ,ΥΥΥIV

)
:= diag

(
Imk, Im, Im(k−1),ΨΨΨ

)
.

It then follows from Hallin et al. (2010b, Section 4.1) that, for given f, a locally and

asymptotically most stringent test φ
(n)
f , say, rejects H0 for large values of Q

(n)

ϑ̂ϑϑ,f
, where

(throughout, we denote by A− the Moore-Penrose inverse of A)

Q
(n)
ϑϑϑ,f := (∆∆∆ϑϑϑ,f)

′
(
ΓΓΓ−

ϑϑϑ,f − (ςςς(n))−1ΥΥΥ
[
ΥΥΥ′(ςςς(n))−1ΓΓΓϑϑϑ,f(ςςς

(n))−1ΥΥΥ
]−

ΥΥΥ′(ςςς(n))−1
)

∆∆∆ϑϑϑ,f (5.3)

= (∆∆∆IV

ϑϑϑ,f)
′
(
(ΓΓΓIV

ϑϑϑ,f)
− − (ςςς

(n)
IV )−1ΥΥΥIV

[(
ΥΥΥIV

)′
(ςςς

(n)
IV )−1ΓΓΓIV

ϑϑϑ,f(ςςς
(n)
IV )−1ΥΥΥIV

]−(
ΥΥΥIV

)′
(ςςς

(n)
IV )−1

)
∆∆∆IV

ϑϑϑ,f ,

and ϑ̂ϑϑ := ϑ̂ϑϑ
(n)

denotes a sequence of estimators satisfying the following Assumption (E)
with K reducing to {f}.
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Assumption (E). We say that a sequence of estimators ϑϑϑ(n) of ϑϑϑ, n ∈ N, satisfies
Assumption (E) for some given collection K of m-tuples of standardized radial densities

if, as n → ∞ as in Assumption (B), ϑϑϑ(n) is

(E1) constrained: P
(n)
ϑϑϑ0;g

[
ϑϑϑ(n) ∈ H0

]
= 1 for all n, ϑϑϑ0 ∈ H0, and g ∈ K;

(E2) n1/2(ςςς(n))−1-consistent: for all ϑϑϑ0 ∈ H0, n1/2
(
ςςς(n)

)−1
(ϑϑϑ(n) − ϑϑϑ0) = OP(1), as

n → ∞, under P
(n)
ϑϑϑ0;g

, for all g ∈ K;

(E3) locally asymptotically discrete: for all ϑϑϑ0 ∈ H0 and all c > 0, there exists M =

M(c) > 0 such that the number of possible values of ϑϑϑ(n) in balls of the form

{t ∈ R
L : n1/2‖

(
ςςς(n)

)−1
(t −ϑϑϑ0)‖ ≤ c} is bounded by M , uniformly in n.

Assumption (E3) is a theoretical assumption that has no impact in practice (see pages 125
or 188 of Le Cam and Yang (2000) for a discussion). Any estimator satisfying (E1) and
(E2) can be turned into an estimator also satisfying (E3) by discretization (see, e.g.,
Hallin et al. (2006)), a fact we will no further emphasize in the notation by tacitly

assuming, in the statement of asymptotic results, that any ϑϑϑ(n), when necessary, has
been adequately discretized.

The sequences of tests φ
(n)
f associated with the m-tuple f achieve local asymptotic

optimality at f. Moreover, they are of a purely parametric nature since, in general, they
are valid at f only—that is, they achieve the correct nominal asymptotic level under
correctly specified f only, even when based on an estimator ϑϑϑ(n) satisfying Assumption (E)
under a broad collection K of densities. An exception is the Gaussian test φ

(n)
N associated

with an m-tuple of Gaussian radial densities which, with a Gaussian MLE ϑϑϑ(n), remains
valid under any m-tuple g = (g1, . . . , gm) such that gi has Gaussian kurtosis (that is, in
the notation of Section 6 below, κk(gi) = 0) for all i = 1, . . . , m (this, of course, requires
finite fourth-order moments). Clearly, this is somewhat unsatisfactory in practice, and
there is a need to define alternative optimal tests, that remain valid under much broader
conditions. The next two sections are devoted to the construction of such tests.

6. Gaussian and pseudo-Gaussian tests.

In this section, we construct a pseudo-Gaussian version φ
(n)†
N of the Gaussian test φ

(n)
N ,

that is, a test that shares the optimality properties of φ
(n)
N in the multinormal case, while

remaining valid under a much broader class of densities—namely, the class of all (pos-
sibly heterokurtic) m-tuples of elliptic densities with finite fourth-order moments. Our
construction is based on a general method proposed by Hallin and Paindaveine (2008a),
which exploits the ULAN structure of the experiment. Finally, we show that this pseudo-

Gaussian test φ
(n)†
N asymptotically coincides with the test φ

(n)
HPV proposed, on heuristic

grounds, in Hallin et al. (2010a), the optimality properties of which thus follow.
Let (F4

1 )m denote the collection of m-tuples of standardized radial densities yielding
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finite fourth-order moments in each population:

(F4
1 )m :=

{
g = (g1, . . . , gm) ∈ (F1)

m : Ek(gi) :=

∫ 1

0

(G̃−1
ik (u))4du < ∞, i = 1, . . . , m

}
,

where r 7→ G̃ik(r) := (µk−1;gi )
−1
∫ r

0 sk−1gi(s) ds stands for the distribution function,

under P
(n)
ϑϑϑ;g, of the dij(ϑϑϑ)’s, j = 1, . . . , ni. Then, writing Dk(gi) :=

∫ 1

0
(G̃−1

ik (u))2du,

κk(gi) :=
k

k + 2
× Ek(gi)

D2
k(gi)

− 1,

for any g ∈ (F4
1 )m, is a measure of kurtosis in the ith elliptic population under P

(n)
ϑϑϑ;g;

see, e.g., page 54 of Anderson (2003). If gi is Gaussian, Ek(gi) = k(k + 2)/a2
k and

Dk(gi) = k/ak, so that κk(gi) = 0.

Since the optimal Gaussian test φ
(n)
N of Section 5 is based on a quadratic form in

the eigenvector part ∆∆∆IV

ϑϑϑ;φ of the Gaussian central sequence, defining a pseudo-Gaussian

version of φ
(n)
N clearly requires controlling the asymptotic behavior of ∆∆∆IV

ϑϑϑ;φ also away
from the Gaussian case. This is made possible by the following result.

Lemma 6.1. Assume that (A), (B), and (D ′) hold. Fix any ϑϑϑ0 ∈ H0 (the eigenvalues
are the ϑϑϑ0-ordered eigenvalues) and g∈(F4

1 )m. Then,

(i) under P
(n)
ϑϑϑ0;g, ∆∆∆IV

ϑϑϑ0;φ is asymptotically normal, with mean zero and covariance matrix

ΓΓΓg,IV
ϑϑϑ0;φ := diag

(
ΓΓΓg,IV ,1

ϑϑϑ0;φ
, . . . ,ΓΓΓg,IV ,m

ϑϑϑ0;φ

)
, where ΓΓΓg,IV ,i

ϑϑϑ0;φ
:=

a2
kEk(gi)

4k(k+2) G
βββ
k (ννν(i))−1(Gβββ

k )′;

(ii) reinforcing (D ′) into (D) and defining ΓΓΓg,IV
ϑϑϑ0;φ,g := diag

(
ΓΓΓg,IV ,1

ϑϑϑ0;φ,g, . . . ,ΓΓΓ
g,IV ,m
ϑϑϑ0;φ,g

)
, with

ΓΓΓg,IV ,i
ϑϑϑ0;φ,g := akDk(gi)

4k G
βββ
k (ννν(i))−1(Gβββ

k )′, we have that

∆∆∆IV

ϑϑϑ0+n−1/2ςςς(n)τττ(n);φ −∆∆∆IV

ϑϑϑ0;φ + ΓΓΓg,IV
ϑϑϑ0;φ,gτττ

(n)
IV

is oP(1) as n → ∞, under P
(n)
ϑϑϑ0;g

;

(iii) still with (D ′) reinforced into (D), ∆∆∆IV

ϑϑϑ0;φ−ΓΓΓg,IV
ϑϑϑ0;φ,gτττ

(n)
IV is asymptotically normal, with

mean zero and covariance matrix ΓΓΓg,IV
ϑϑϑ0;φ

under P
(n)

ϑϑϑ0+n−1/2ςςς(n)τττ (n);g
for any

g ∈ (F4
a )m := (F4

1 )m ∩ (Fa)m.

Point (i) of this Lemma directly follows from the multivariate central limit theorem.
Note that Assumption (D ′) is sufficient for asymptotic normality since the common
value βββ of the eigenvector matrix is well identified under Assumption (D ′). However,
points (ii) and (iii) require ULAN and therefore Assumption (D); they directly follow
from Lemma 4.2 in Hallin et al. (2010b); the proof is therefore omitted.

Transposed to the present context, and temporarily assuming that the actual
g ∈ (F4

1 )m is known, the pseudo-Gaussian test of Hallin and Paindaveine (2008a) is
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rejecting the null hypothesis of CPC for large values of

Q
N (n)
ϑϑϑ0,g :=

(
∆∆∆IV

ϑϑϑ0;φ

)′
(ΓΓΓg,IV

ϑϑϑ0;φ
)⊥∆∆∆IV

ϑϑϑ0;φ, (6.1)

with

(ΓΓΓg,IV
ϑϑϑ;φ )⊥ := (ΓΓΓg,IV

ϑϑϑ;φ )− − (ΓΓΓg,IV
ϑϑϑ;φ )−ΓΓΓg,IV

ϑϑϑ;φ,g(ςςς
(n)
IV )−1ΥΥΥIV

[(
ΥΥΥIV

)′
(ςςς

(n)
IV )−1ΓΓΓg,IV

ϑϑϑ;φ,g(ΓΓΓ
g,IV
ϑϑϑ;φ )−ΓΓΓg,IV

ϑϑϑ;φ,g(ςςς
(n)
IV )−1ΥΥΥIV

]−(
ΥΥΥIV

)′
(ςςς

(n)
IV )−1ΓΓΓg,IV

ϑϑϑ;φ,g(ΓΓΓ
g,IV
ϑϑϑ;φ )−,

where ΓΓΓg,IV
ϑϑϑ;φ and ΓΓΓg,IV

ϑϑϑ;φ,g are defined in Lemma 6.1, and eigenvalues have been ϑϑϑ0-reordered
as explained in Sections 3 and 4. Now, using the fact that

(
ΓΓΓg,IV ,i

ϑϑϑ;φ

)−
=

k(k + 2)

a2
kEk(gi)

G
βββ(i)

k ννν(i)(Gβββ(i)

k )′,

the quadratic form Q
N (n)
ϑϑϑ0,g after some algebra rewrites

Q
N (n)
ϑϑϑ0,g =

m∑

i=1

∑

1≤j<j′≤k

ni

1 + κk(gi)
(βββ′

jS
(n)
φ,iβββj′)

2 (6.2)

−
m∑

i,i′=1

∑

1≤j<j′≤k

nini′

n

1

(1 + κk(gi))(1 + κk(gi′))

νjj′ (g)

(ν
(i)
jj′ν

(i′)
jj′ )1/2

(βββ′
jS

(n)
φ,iβββj′) (βββ′

jS
(n)
φ,i′βββj′ ),

where

S
(n)
φ,i :=

k

σ2Dk(gi)
βββ(ΛΛΛV;βββ

i )−1/2βββ′[ 1

ni

ni∑

j=1

(Xij − θθθi)(Xij − θθθi)
′
]
βββ(ΛΛΛV;βββ

i )−1/2βββ′

and

diag(ν12(g), . . . , ν(k−1)k(g)) :=

(
m∑

i=1

r
(n)
i

1 + κk(gi)
(ννν(i))−1

)−1

=: ννν(g).

In order to obtain a genuine test statistic (that is, a random variable that does not

depend anymore on ϑϑϑ0 nor g) which nevertheless, under any P
(n)
ϑϑϑ0;g (with ϑϑϑ0 ∈ H0 and

g ∈ (F4
1 )m) and contiguous alternatives, is asymptotically equivalent to Q

N (n)
ϑϑϑ0,g , it is

sufficient to

(a) replace ϑϑϑ0 in (6.2) with some estimator ϑϑϑ(n) satisfying Assumption (E) for the
class K = (F4

1 )m, and
(b) replace the coefficients Dk(gi) and the kurtoses κk(gi) with consistent (still un-

der P
(n)
ϑϑϑ0;g

, ϑϑϑ0 ∈ H0, g ∈ (F4
1 )m) estimators D̂

(n)
i and κ̂

(n)
i , respectively.

In this pseudo-Gaussian context, a natural estimator for ϑϑϑ0 is

ϑϑϑ
(n)
N :=

(
X̄′

1, . . . , X̄
′
m, σ̂2

1 , . . . , σ̂2
m, (6.3)

(dv
◦

ec Λ̂ΛΛ1)
′/
∏k

j=1(λ̂1j)
1/k, . . . , (dv

◦

ecΛ̂ΛΛm)′/
∏k

j=1(λ̂mj)
1/k,1′

m ⊗ (vec β̂ββ)′
)′

,
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where X̄i := n−1
i

∑ni

j=1 Xij , Λ̂ΛΛi = diag(λ̂i1, . . . , λ̂ik), i = 1, . . . , m, and β̂ββ are the max-
imum likelihood estimators of the corresponding parameters in the CPC model (see

Flury 1986), and σ̂2
i denotes the empirical median of the d2

ij(X̄i, β̂ββΛ̂ΛΛiβ̂ββ
′
/
∏k

j=1(λ̂ij)
1/k)’s,

j = 1, . . . , ni. Note that the estimators β̂ββ and Λ̂ΛΛi, resulting from the Flury and Gaut-
schi (1986) algorithm, do not provide consistent estimators of βββ and the ϑϑϑ0-reordered

eigenvalues matrices ΛΛΛV;βββ
i , respectively, because of the possibly different ordering of eigen-

values (and also because the determinant of Λ̂ΛΛi is not equal to one in general). However,

Flury (1986) shows that they are root-n consistent for NΠβββ = NΠβββ(1) = NΠMΠ2
2 βββ(2) =

. . . = NΠMΠm
m βββ(m) and the corresponding reordered version of the ΛΛΛV;βββ

i ’s for some global

permutation matrix NΠ. Now, since both the null hypothesis and the test statistic Q
N (n)
ϑϑϑ0,g

are invariant with respect to such global permutations, no reordering of the eigenval-
ues is needed here. Note that Dk(gi) is consistently estimated by k

∏k
j=1(λ̂ij)

1/k/σ̂2
i ,

i = 1, . . . , m. Finally, an obvious choice for κ̂
(n)
i is then

κ̂
(n)
i :=

k

k + 2
×

n−1
i

∑ni

j=1 d4
ij(X̄i, β̂ββΛ̂ΛΛiβ̂ββ

′
)

(
n−1

i

∑ni

j=1 d2
ij(X̄i, β̂ββΛ̂ΛΛiβ̂ββ

′
)
)2 − 1.

Letting S
(n)
i := ni

−1
∑ni

j=1(Xij − X̄i)(Xij − X̄i)
′, this leads to the test statistic

Q
(n)†
N :=

m∑

i=1

∑

1≤j<j′≤k

ni

1 + κ̂
(n)
i

(λ̂ij λ̂ij′ )
−1 (β̂ββ

′

jS
(n)
i β̂ββj′ )

2 (6.4)

−
m∑

i,i′=1

∑

1≤j<j′≤k

nini′

n

(λ̂ij λ̂ij′ )
−1/2(λ̂i′j λ̂i′j′ )

−1/2

(1 + κ̂
(n)
i )(1 + κ̂

(n)
i′ )

ν̂jj′

(ν̂
(i)
jj′ ν̂

(i′)
jj′ )1/2

(β̂ββ
′

jS
(n)
i β̂ββj′ ) (β̂ββ

′

jS
(n)
i′ β̂ββj′),

where we write ν̂
(i)
jj′ and ν̂jj′ , respectively, for the ν

(i)
jj′ and νjj′ (g) values computed from

the λ̂ij and κ̂
(n)
i estimators. The resulting pseudo-Gaussian test φ

(n)†
N rejects the null

hypothesis of CPC, at asymptotic level α, as soon as Q
(n)†
N exceeds the α-upper quantile

of the chi-square distribution with (m − 1)k(k − 1)/2 degrees of freedom.
To investigate the asymptotic behavior of this pseudo-Gaussian test under local alter-

natives, we consider perturbations ϑϑϑ0 +n−1/2ςςς(n)τττ (n) such that, letting Assumption (B′)
hold and putting ςςςτττ := limn→∞ ςςς(n)τττ (n), with

ςςς
(n)
IV τττ

(n)
IV = ((r

(n)
1 )−1/2(vecb(1),(n))′, . . . , (r(n)

m )−1/2(vecb(m),(n))′)′

and
ςςςIV τττ IV = (r

−1/2
1 (vecb(1))′, . . . , r−1/2

m (vecb(m))′)′,

we still have, for all i = 1, . . . , m, βββ′
b(i) + (b(i))′βββ = 0 (where βββ is the common value,

under ϑϑϑ0, of the m eigenvector matrices). Assume furthermore that the corresponding
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perturbed value of ϑϑϑ0 does not belong to H0 anymore (does not belong to the linear
manifold C). Letting, for any such ϑϑϑ0 and any g ∈ (F4

1 )m,

CN
ϑϑϑ0;g := diag

(
1

1 + κk(g1)
(ννν(1))−1, . . . ,

1

1 + κk(gm)
(ννν(m))−1

)

and
D

N (n)
ϑϑϑ0;g

:= CN
ϑϑϑ0;g − CN

ϑϑϑ0;g

[
((r(n))−11m1′

m(r(n))−1) ⊗ ννν(g)
]
CN

ϑϑϑ0;g,

standard algebra yields

lNϑϑϑ0,τττ ;g := lim
n→∞

{
(τττ

(n)
IV )′(Im ⊗ G

βββ
k )D

N (n)
ϑϑϑ0;g (Im ⊗ G

βββ
k )′(τττ

(n)
IV )
}

(6.5)

=

m∑

i,i′=1

(vecb(i))′Gβββ
k

[
δii′T

N (i,i′)
g − (ri ri′ )

1/2 TN (i,i′)
g ννν(g)TN (i,i′)

g

](
G

βββ
k

)′
(vecb(i′)),

where T
N (i,i′)
g :=

(
(1 + κk(gi))(1 + κk(gi′))

)−1/2
(ννν(i))−1/2(ννν(i′))−1/2; r(n) was defined

on Page 10. The following result then summarizes the asymptotic properties of Q
(n)†
N

and φ
(n)†
N .

Proposition 6.1. Assume that (A), (B), and (D ′) hold. Then,

(i) Q
(n)†
N is asymptotically chi-square with (m− 1)k(k − 1)/2 degrees of freedom under⋃
ϑϑϑ∈H0

⋃
g∈(F4

1 )m{P(n)
ϑϑϑ;g}, and (provided that (D ′) is reinforced into (D) and (B)

into (B ′)) asymptotically noncentral chi-square, still with (m−1)k(k−1)/2 degrees

of freedom, but with noncentrality parameter lNϑϑϑ,τττ ;g underP
(n)

ϑϑϑ+n−1/2ςςς(n)τττ (n);g
, ϑϑϑ∈H0,

ςςςτττ := limn→∞ ςςς(n)τττ (n) as described above, and g∈(F4
a )m;

(ii) φ
(n)†
N has asymptotic level α under

⋃
ϑϑϑ∈H0

⋃
g∈(F4

1 )m{P(n)
ϑϑϑ;g};

(iii) letting (D ′) be reinforced into (D), φ
(n)†
N is locally and asymptotically most strin-

gent, at asymptotic level α, for
⋃

ϑϑϑ∈H0

⋃
g∈(F4

1 )m{P(n)
ϑϑϑ;g} against alternatives of the

form
⋃

ϑϑϑ/∈H0
{P(n)

ϑϑϑ;φ}.

One can easily check that φ
(n)†
N actually coincides with the test φ

(n)
HPV proposed in

Hallin et al. (2010a); theorem 6.1 therefore clarifies the asymptotic optimality properties
of the latter.

7. Optimal rank-based tests.

7.1. A rank-based central sequence for eigenvectors.

Even though the pseudo-Gaussian test φ
(n)†
N of the previous section is valid under a

broad class of densities, it still requires finite fourth-order moments, and may be poorly
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robust, since it is based on empirical covariance matrices. In this section, we show how
ranks (actually, a multivariate generalization of signed ranks) allow us to improve on the
performances of pseudo-Gaussian tests both in terms of validity and efficiency.

A general result by Hallin and Werker (2003) implies that, in adaptive semiparametric
models for which fixed-f submodels are ULAN and fixed-ϑϑϑ submodels are generated by
a group Gϑϑϑ of transformations (acting on the observation space), invariant versions of
central sequences exist under very general assumptions. In the present case, the ULAN
structure of fixed-f submodels is established in Section 5. As for the fixed-ϑϑϑ submodels,
consider the group Gϑϑϑ,◦ of continuous monotone radial transformations Gh of the form

X 7→ Gh(X11, . . . ,Xmnm)

:= (θθθ1+h1(d11(θθθ1,βββ
(1)ΛΛΛV

1 βββ(1)′))βββ(1)(ΛΛΛV

1 )1/2βββ(1)′
U11(θθθ1,βββ

(1)ΛΛΛV

1 βββ(1)′), . . . ,

θθθm+hm(dmnm(θθθm,βββ(m)ΛΛΛV

mβββ(m)′))βββ(m)(ΛΛΛV

m)1/2βββ(m)′
Umnm(θθθm,βββ(m)ΛΛΛV

mβββ(m)′)),

where for all i = 1, . . . , m, hi : R
+→ R

+ is continuous, monotone increasing, and such that
hi(0) = 0 and limr→∞ hi(r)= ∞. Letting σ2 := (σ2

1 , . . . , σ2
m)′, this group is a generating

group for the submodel
⋃

σ2

⋃
f

{
P

(n)

ϑϑϑI ,σ2,ϑϑϑIII ,ϑϑϑIV ;f

}
(a nonparametric family). The invari-

ance principle suggests basing inference on statistics that are measurable with respect to
the corresponding maximal invariant, namely the vectors (U11, . . . ,Umnm) (a multivari-
ate generalization of signs) along with the vector (R11, . . . , Rmnm) of ranks, where Uij =

Uij(θθθi,βββ
(i)ΛΛΛV

i βββ(i)′), and Rij = Rij(θθθi,βββ
(i)ΛΛΛV

i βββ(i)′) denotes the rank of dij(θθθi,βββ
(i)ΛΛΛV

i βββ(i)′)

among di1(θθθi,βββ
(i)ΛΛΛV

i βββ(i)′), . . . , dini(θθθi,βββ
(i)ΛΛΛV

i βββ(i)′). Such invariant statistics of course are

distribution-free under
⋃

σ2

⋃
f

{
P

(n)

ϑϑϑI ,σ2,ϑϑϑIII ,ϑϑϑIV ;f

}
.

The existence of central sequences that are measurable with respect to the multivariate
signs Uij and the ranks Rij (recall that central sequences are always defined up to oP(1)
quantities) is established by the asymptotic representation result of Lemma 7.1(i) below.

Denoting by K an m-tuple of score functions satisfying Assumption (C), consider the
random vectors

∆∆∆
˜

IV

ϑϑϑ;K := ((∆∆∆
˜

IV ,1
ϑϑϑ;K1

)′, . . . , (∆∆∆
˜

IV ,m
ϑϑϑ;Km

)′)′,
with

∆∆∆
˜

IV ,i
ϑϑϑ;Ki

:=
1

2
√

ni
G

βββ(i)

k L
βββ(i),ΛΛΛV

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

Ki

(
Rij

ni + 1

)
vec
(
UijU

′
ij

)
. (7.1)

In order to describe the asymptotic behavior of ∆∆∆
˜

IV

ϑϑϑ;K , similarly define

∆∆∆IV

ϑϑϑ;K;g := ((∆∆∆IV ,1
ϑϑϑ;K1;g1

)′, . . . , (∆∆∆IV ,m
ϑϑϑ;Km;gm

)′)′,

with

∆∆∆IV ,i
ϑϑϑ;Ki;gi

:=
1

2
√

ni
G

βββ(i)

k L
βββ(i),ΛΛΛV

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

Ki

(
G̃ik

(
dij

σ

))
vec
(
UijU

′
ij

)
.

We then have the following result.
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Lemma 7.1. Assume that (A), (B), (C), and (D ′) hold. Fix any ϑϑϑ0 ∈ H0 (the eigen-
values are the ϑϑϑ0-reordered eigenvalues) and g ∈ (F1)

m. Then,

(i) ∆∆∆
˜

IV

ϑϑϑ0;K = ∆∆∆IV

ϑϑϑ0;K;g + oL2(1), under P
(n)
ϑϑϑ0;g

, as n → ∞;

(ii) under P
(n)
ϑϑϑ0;g

, ∆∆∆IV

ϑϑϑ0;K;g is asymptotically normal with mean zero and covariance ma-

trix ΓΓΓIV

ϑϑϑ0;K := diag(ΓΓΓIV ,1
ϑϑϑ0;K1

, . . . ,ΓΓΓIV ,m
ϑϑϑ0;Km

), with ΓΓΓIV ,i
ϑϑϑ0;Ki

:= Jk(Ki)
4k(k+2)G

βββ
k (ννν(i))−1(Gβββ

k )′;

(iii) reinforcing (D ′) into (D) and defining ΓΓΓIV

ϑϑϑ0;K,g := diag(ΓΓΓIV ,1
ϑϑϑ0;K1,g1

, . . . ,ΓΓΓIV ,m
ϑϑϑ0;Km,gm

),

with ΓΓΓIV ,i
ϑϑϑ0;Ki,gi

:= Jk(Ki,gi)
4k(k+2) G

βββ
k (ννν(i))−1(Gβββ

k )′, and assuming moreover that g ∈ (Fa)m,

∆∆∆IV

ϑϑϑ0;K;g −ΓΓΓIV

ϑϑϑ0;K,gτττ
(n)
IV is asymptotically normal with mean zero and covariance ma-

trix ΓΓΓIV

ϑϑϑ0;K under P
(n)

ϑϑϑ0+n−1/2ςςς(n)τττ(n);g
.

An immediate corollary of the asymptotic representation result in Part (i) of this
lemma is that ∆∆∆

˜
IV

ϑϑϑ;f := ∆∆∆
˜

IV

ϑϑϑ;Kf
, with Kf := (Kf1 , . . . , Kfm), constitutes a signed-rank

version of the eigenvector part ∆∆∆IV

ϑϑϑ;f of the f-central sequence; Parts (ii) and (iii) provide
the asymptotic distribution of ∆∆∆

˜
IV

ϑϑϑ;Kf
, under the null and local alternatives.

In order to construct a test statistic based on ∆∆∆
˜

IV

ϑϑϑ;K , we also need to know how it is

affected (asymptotically, under the null hypothesis and contiguous alternatives) by the

substitution, for ϑϑϑ, of an estimator ϑϑϑ(n) satisfying Assumption (E). This important step
is taken care of by the asymptotic linearity result of Lemma 7.2. This lemma uses the
local reordering of eigenvalues described in the previous sections.

Lemma 7.2. Assume that (A), (B), (C), and (D ′) hold, and let ϑϑϑ(n) be an estima-
tor satisfying Assumption (E). Fix ϑϑϑ0 ∈ H0 (with common value βββ of the eigenvector
matrices and the corresponding reordering of eigenvalues). Then, for all g∈(Fa)m,

∆∆∆
˜

IV

ϑ̃ϑϑ;K
− ∆∆∆
˜

IV

ϑϑϑ0;K + ΓΓΓIV

ϑϑϑ0;K,g (ςςς
(n)
IV )−1 n1/2

[
1m ⊗ vec (β̂ββ − βββ)

]
= oP(1)

as n → ∞, under P
(n)
ϑϑϑ0;g

.

See the appendix for the proof. Finally, the construction of the rank-based tests of
Section 7.2 requires consistent estimation of the cross-information quantities Jk(Ki, gi),
i = 1, . . . , m. The following method, which is inspired by a local maximum likelihood
argument, heavily relies on the asymptotic linearity result of Lemma 7.2, and was first
proposed, in a different context, by Hallin et al. (2006). Fix i ∈ {1, . . . , m} and g∈(Fa)m,

and let ϑϑϑ(n) satisfy Assumption (E). Denote by β̂ββ the estimator of the common eigenvector

matrix in ϑϑϑ(n); that is, assume that ϑϑϑ(n) =: (ϑ̂ϑϑ
′

I
, ϑ̂ϑϑ

′

II
, ϑ̂ϑϑ

′

III
,1′

m ⊗ (vec β̂ββ)′)′. Define, for any
ρ ≥ 0,

vec (β̂ββ(ρ)) := vec (β̂ββ) + n
−1/2
i ρ k(k + 2)Gβ̂ββ

kν̂νν(i)(Gβ̂ββ
k )′ ∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
. (7.2)

Consider the (almost surely) piecewise continuous quadratic form

ρ 7→ h
(n)
i (ρ) := (∆∆∆

˜
IV ,i

ϑϑϑ(n),Ki
)′ (ΓΓΓIV ,i

ϑϑϑ(n);Ki
)−∆∆∆
˜

IV ,i

ϑϑϑ(n)(ρ);Ki
,
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where ϑϑϑ(n)(ρ) is simply obtained from ϑϑϑ(n) by replacing β̂ββ with β̂ββ(ρ), that is, ϑϑϑ(n)(ρ) :=

(ϑ̂ϑϑ
′

I
, ϑ̂ϑϑ

′

II
, ϑ̂ϑϑ

′

III
,1′

m ⊗ (vec β̂ββ(ρ))′)′. Then, Lemma 7.2, the consistency of ϑϑϑ(n), and the defi-

nition of β̂ββ(ρ) in (7.2) imply that

h
(n)
i (ρ) = (∆∆∆

˜
IV ,i

ϑϑϑ(n);Ki
)′(ΓΓΓIV ,i

ϑϑϑ(n);Ki
)−
[
∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
−ΓΓΓIV ,i

ϑϑϑ(n);Ki,gi
n

1/2
i vec (β̂ββ(ρ) − β̂ββ)

]
+ oP(1)

= (∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
)′(ΓΓΓIV ,i

ϑϑϑ(n);Ki
)−
[
Ik2− ρk(k + 2)ΓΓΓIV ,i

ϑϑϑ(n);Ki,gi
G

β̂ββ
kν̂νν(i)(Gβ̂ββ

k )′
]
∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
+ oP(1)(7.3)

as n → ∞, under P
(n)
ϑϑϑ0;g. Now, note that k(k+2)Gβββ

kννν(i)(Gβββ
k )′ is the Moore-Penrose general-

ized inverse of 1
4k(k+2)G

βββ
k (ννν(i))−1(Gβββ

k )′. Hence, recalling that ΓΓΓIV ,i
ϑϑϑ0;Ki

:= Jk(Ki)
4k(k+2)G

βββ
k (ννν(i))−1(Gβββ

k )′

and ΓΓΓIV ,i
ϑϑϑ0;K,g := Jk(Ki,gi)

4k(k+2) G
βββ
k (ννν(i))−1(Gβββ

k )′, (7.3) can be rewritten as

h
(n)
i (ρ) =

(
1 − Jk(Ki, gi)ρ

)
h

(n)
i (0) + oP(1), (7.4)

still as n → ∞, under P
(n)
ϑϑϑ0;g. Since h

(n)
i (0) > 0, an intuitively appealing estimator

for (Jk(Ki, gi))
−1, in view of (7.4), is given by ρ̂ := inf{ρ > 0 : h

(n)
i (ρ) < 0}. By proceed-

ing along the same lines as in Hallin et al. (2006), it is easily shown that Ĵk(Ki, gi) := ρ̂−1

is, after adequate discretization (which still has no impact in fixed-ni practice), a consis-

tent estimator of Jk(Ki, gi) under P
(n)
ϑϑϑ0;g

.

7.2. Optimal rank-based tests.

Motivated by the form of the pseudo-Gaussian statistic in (6.1), consider the signed-rank
statistic

Q
˜

(n)

ϑϑϑ0;K,g
:=
(
∆∆∆
˜

IV

ϑϑϑ0;K

)′
(ΓΓΓIV

ϑϑϑ0;K,g)
⊥ ∆∆∆
˜

IV

ϑϑϑ0;K , (7.5)

with

(ΓΓΓIV

ϑϑϑ;K,g)
⊥ := (ΓΓΓIV

ϑϑϑ;K)− − (ΓΓΓIV

ϑϑϑ;K)−ΓΓΓIV

ϑϑϑ;K,g(ςςς
(n)
IV )−1ΥΥΥIV

×
[(

ΥΥΥIV
)′

(ςςς
(n)
IV )−1ΓΓΓIV

ϑϑϑ;K,g(ΓΓΓ
IV

ϑϑϑ;K)−ΓΓΓIV

ϑϑϑ;K,g(ςςς
(n)
IV )−1ΥΥΥIV

]−(
ΥΥΥIV

)′
(ςςς

(n)
IV )−1ΓΓΓIV

ϑϑϑ;K,g(ΓΓΓ
IV

ϑϑϑ;K)−,

where ΓΓΓIV

ϑϑϑ;K and ΓΓΓIV

ϑϑϑ;K,g are defined in Lemma 7.1 (this includes the ϑϑϑ0-reordering of

eigenvalues). Now, by using the facts that (Gβββ(i)

k )′Gβββ(i)

k = 2Ik(k−1)/2 and
(
ΓΓΓIV ,i

ϑϑϑ0;K

)−
=

k(k+2)
Jk(K1)G

βββ(i)

k ννν(i)(Gβββ(i)

k )′, standard algebra yields

Q
˜

(n)

ϑϑϑ0;K,g
= k(k + 2)

{ m∑

i=1

∑

1≤j<j′≤k

ni

Jk(Ki)
(βββ′

j S
˜ K;i

βββj′ )
2 (7.6)

−
m∑

i,i′=1

∑

1≤j<j′≤k

nini′

n

Jk(Ki, gi)Jk(Ki′ , gi′)

Jk(Ki)Jk(Ki′)

νjj′ (K, g)

(ν
(i)
jj′ν

(i′)
jj′ )1/2

(βββ′
j S
˜ K;i

βββj′) (βββ′
j S
˜ K;i′

βββj′)

}
,
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where

S
˜ K;i

:=
1

ni

ni∑

j=1

Ki

(
Rij(ϑϑϑ0)

n + 1

)
Uij(ϑϑϑ0)U

′
ij(ϑϑϑ0)

and

diag(ν12(K, g), . . . , ν(k−1)k(K, g)) :=

(
m∑

i=1

r
(n)
i

J 2
k (Ki, gi)

Jk(Ki)
(ννν(i))−1

)−1

=: ννν(K, g).

As for the pseudo-Gaussian tests of Section 6, obtaining a genuine test statistic
requires replacing in (7.6) the parameter value ϑϑϑ0 with an estimator ϑϑϑ(n) satisfying
Assumption (E)—here, with K = (Fa)m—and replacing the cross-information quanti-

ties Jk(Ki, gi) with consistent (under P
(n)
ϑϑϑ0;g, g ∈ (Fa)m) estimates. The estimates Ĵk(Ki, gi)

defined at the end of Section 7.1 can be used for that purpose. As for ϑϑϑ(n), many choices

are possible. Still avoiding moment assumptions, we propose the following one. Let θθθ
(n)
i

and V
(n)
i , i = 1, . . . , m be the location and shape estimators associated with the affine-

equivariant multivariate median proposed by Hettmansperger and Randles (2002), which
are implicitly defined by

1

ni

ni∑

j=1

Uij(θθθ
(n)
i ,V

(n)
i ) = 0 and

1

ni

ni∑

j=1

Uij(θθθ
(n)
i ,V

(n)
i )U′

ij(θθθ
(n)
i ,V

(n)
i ) =

1

k
Ik,

with det(V
(n)
i ) = 1, i = 1, . . . , m. Under H0, the eigenvalue matrices ΛΛΛV

i = diag(λVi1, . . . , λ
V

ik),
i = 1, . . . , m and the matrix βββ = (βββ1, . . . ,βββk) of common eigenvectors then can be esti-
mated consistently by using the plug-in method as in Boente and Orellana (2001). More

precisely, the resulting estimates Λ̂ΛΛVi , i = 1, . . . , m and β̂ββ are obtained by solving the
ML-type equations

βββ′
j

( m∑

i=1

ni

λVij − λVil
λVijλ

V

il

V
(n)
i

)
βββl = 0, j 6= l = 1, . . . , k, (7.7)

βββ′
jV

(n)
i βββj = λVij , i = 1, . . . , m, j = 1, . . . , k, βββ′

jβββl = δjl, j, l = 1, . . . , k,

where δjl is the usual Kronecker symbol. As in the pseudo-Gaussian context, the re-
sulting estimators are root-n consistent up to a global permutation (see the comments
below (6.3)). Now, the scale parameters σ2

i , i = 1, . . . , m do not appear in (7.6), so that
the resulting “estimators” for ϑϑϑ can be chosen as if they were specified:

ϑϑϑ(n) :=
(
θ̂θθ
′

1, . . . , θ̂θθ
′

m, σ2
1 , . . . , σ2

m, (dv
◦

ec (Λ̂ΛΛV

1 ))′, . . . , (dv
◦

ec (Λ̂ΛΛV

m))′,1′
m ⊗ (vec β̂ββ)′

)′
. (7.8)

It can be checked that, after appropriate discretization, ϑϑϑ(n) in (7.8) satisfies Assump-
tion (E) with K = (F1)

m (hence without requiring any moment condition), so that it can
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be used advantageously in our signed-rank tests. Summing up, the signed-rank statistic
we propose is

Q
˜

(n)

K
:= k(k + 2)

{ m∑

i=1

∑

1≤j<j′≤k

ni

J (Ki)
(β̂ββ

′

j Ŝ
˜ K;i

β̂ββj′)
2

−
m∑

i,i′=1

∑

1≤j<j′≤k

nini′

n

Ĵk(Ki, gi)Ĵk(Ki′ , gi′)

J (Ki)J (Ki′)

ν̂jj′ (K, g)

(ν̂
(i)
jj′ ν̂

(i′)
jj′ )1/2

(β̂ββ
′

j Ŝ
˜ K;i

β̂ββj′) (β̂ββ
′

j Ŝ
˜ K;i′

β̂ββj′)

}
,

where

Ŝ
˜ K;i

:=
1

ni

ni∑

j=1

Ki

(
Rij(ϑϑϑ

(n))

n + 1

)
Uij(ϑϑϑ

(n))U′
ij(ϑϑϑ

(n))

and

diag(ν̂12(K, g), . . . , ν̂(k−1)k(K, g)) :=

(
m∑

i=1

r
(n)
i

Ĵ 2
k (Ki, gi)

J (Ki)
(ν̂νν(i))−1

)−1

=: ν̂νν(K, g),

all parameters being estimated via the chosen estimator ϑϑϑ(n)(given in (7.8), for instance).

The resulting test φ
˜

(n)
K rejects the null of CPC, at asymptotic level α, as soon as Q

˜
(n)

K
exceeds the α-upper quantile of the chi-square distribution with (m−1)k(k−1)/2 degrees
of freedom. Consider perturbations τττ (n) as described in Proposition 6.1 above. Letting

Cϑϑϑ0;K,g := diag

( J 2
k (K1, g1)

Jk(K1)
(ννν(1))−1, . . . ,

J 2
k (Km, gm)

Jk(Km)
(ννν(m))−1

)

and

D
(n)
ϑϑϑ0;K,g := Cϑϑϑ0;K,g − Cϑϑϑ0;K,g

[
((r(n))−11m1′

m(r(n))−1) ⊗ ννν(K, g)
]
Cϑϑϑ0;K,g,

the quantities characterizing the asymptotic distribution of Q
˜

(n)

K
under the corresponding

local alternatives (see Part (i) of Theorem 7.1 below) are

lϑϑϑ0,τττ ;K,g := lim
n→∞

{
(τττ

(n)
IV )′(Im ⊗ G

βββ
k )D

(n)
ϑϑϑ0;K,g(Im ⊗ G

βββ
k)′(τττ

(n)
IV )
}

(7.9)

=
m∑

i,i′=1

(vecb(i))′Gβββ
k

[
δii′T

(i,i′)
K,g − (ri ri′ )

1/2 T
(i,i′)
K,g ννν(K, g)T

(i,i′)
K,g

](
G

βββ
k

)′
(vecb(i′)),

where

T
(i,i′)
K,g :=

Jk(Ki, gi)Jk(Ki′ , gi′)
(
J (Ki)J (Ki′)

)1/2
(ννν(i))−1/2(ννν(i′))−1/2.

We are now ready to state the main result of this paper.

Proposition 7.1. Assume that (A), (B), (C), and (D ′) hold, and let ϑϑϑ(n) be an esti-
mator satisfying Assumption (E) with K = (Fa)m. Then,
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(i) Q
˜

(n)
K is asymptotically chi-square with (m− 1)k(k − 1)/2 degrees of freedom under⋃

ϑϑϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑϑϑ;g}, and (provided that (B) and (D ′) are reinforced into (B ′)

and (D), respectively) asymptotically noncentral chi-square, still with (m− 1)k(k−
1)/2 degrees of freedom, but with noncentrality parameter lϑϑϑ,τττ ;K,g/k(k + 2) un-

der P
(n)

ϑϑϑ+n−1/2ςςς(n)τττ(n);g
, ϑϑϑ ∈ H0, ςςςτττ := limn→∞ ςςς(n)τττ (n) as in Proposition 6.1 and

g∈(Fa)m;

(ii) φ
˜

(n)
K has asymptotic level α under

⋃
ϑϑϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑϑϑ;g};
(iii) reinforcing (D ′) into (D), φ

˜
(n)
Kf

, Kf := (Kf1 , . . . , Kfm), is locally and asymptotically

most stringent, at asymptotic level α, for
⋃

ϑϑϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑϑϑ;g} against alterna-

tives of the form
⋃

ϑϑϑ/∈H0
{P(n)

ϑϑϑ;f } with f := (f1, . . . , fm).

The signed-rank test φ
˜

(n)
K is asymptotically invariant with respect to continuous mono-

tone radial transformatons in the sense that it is asymptotically equivalent to a random
variable which is invariant under such transformations.

8. Power comparison and simulations.

8.1. Asymptotic relative efficiencies.

The asymptotic relative efficiencies (AREs) of the signed-rank test φ
˜

(n)
K with respect

to the pseudo-Gaussian test φ
(n)†
N (equivalently, with respect to φ

(n)
HPV) directly follow as

ratios of noncentrality parameters under local alternatives (see Propositions 6.1 and 7.1).

Proposition 8.1. Assume that (A), (B ′), (C), and (D) hold. Then, the asymptotic rel-

ative efficiency of φ
˜

(n)
K with respect to φ

(n)†
N , when testing P

(n)
ϑϑϑ;g against P

(n)

ϑϑϑ+n−1/2ςςς(n)τττ (n);g
,

with ϑϑϑ ∈ H0, ςςςτττ := limn→∞ ςςς(n)τττ (n) as described in Proposition 6.1, and g∈(F4
a )m, is

AREk,g(φ
˜

(n)
K /φ

(n)†
N ) = lϑϑϑ,τττ ;K,g/k(k + 2)lNϑϑϑ,τττ ;g, (8.1)

where lNϑϑϑ,τττ ;g and lϑϑϑ,τττ ;K,g are defined in (6.5) and (7.9), respectively.

Note that, if g = (g1, . . . , g1) (homogeneous elliptical densities) and if the same score
function—namely, K1—is used for the m rankings, (8.1) simplifies into

AREk,g(φ
˜

(n)
K1

/φ
(n)†
N ) = (1 + κk(g1))J 2

k (K1, g1)/k(k + 2)Jk(K1); (8.2)

these are the AREs obtained in one-sample shape problems (see Hallin and Paindav-
eine (2006) and Hallin et al. (2006), in hypothesis testing and point estimation contexts,
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respectively). The Chernoff-Savage property of Paindaveine (2006) therefore holds: de-

noting by φ
˜

(n)
vdW the van der Waerden rank test (based on the Gaussian scores K1 = . . . =

Km := Ψ−1
k , where Ψ−1

k stands for the quantile function of the chi-square distribution
with k degrees of freedom), we have that

AREk,g(φ
˜

(n)
vdW/φ

(n)†
N ) ≥ 1

for all homogeneous g ∈ (F4
a)m, with equality in the Gaussian case only.

In the bivariate two-population case (m = k = 2) with b(1) = 0 (no perturbation on

the eigenvectors of the first population), the ARE under g = (g1, g2) of φ
(n)†
N with respect

to the optimal parametric test φ
(n)
g (recall that, under (B ′), ri := limn→∞ ni/n) is

ARE2,g(φ
(n)†
N /φ(n)

g ) =
k(k + 2)(1 + κ2(g2))

−1
(
1 − r2(ν

(2)
12 )−1(1 + κ2(g2))

−1ν12(g)
)

J2(g2)
(
1 − r2(ν

(2)
12 )−1J2(g2)ν12(Kg, g)

) ,

(8.3)
where denoting by Kg1 and Kg2 the score functions associated with g1 and g2 respectively,
Kg = (Kg1 , Kg2) and ν12(Kg, g) naturally stands for the ν12(K, g) quantity computed

from Kg scores. Under the same setting, the ARE of the van der Waerden test φ
˜

(n)
vdW(with

score Kφ := Ψ−1
k ) with respect to φ

(n)
g takes the form

ARE2,g(φ
˜

(n)
vdW/φ(n)

g ) =

J 2(Kφ,g2)
J (Kφ)

(
1 − r2(ν

(2)
12 )−1 J 2(Kφ,g2)

J (Kφ) ν12(Kφ, g)
)

J2(g2)
(
1 − r2(ν

(2)
12 )−1J2(g2)ν12(Kg, g)

) . (8.4)

These AREs do not depend on the value βββ of the common eigenvectors under the null,
nor on the perturbation b(2). Tables 1 and 2 provide numerical values of (8.3) and (8.4),
respectively, with r2 = 1− r1 = 120/220 (the sampling scheme considered in the simula-
tions of Section 8.2), for various choices of bivariate Student tν and Gaussian population
densities g = (g1, g2). Note that the ARE of the pseudo-Gaussian tests with respect to
van der Waerden ones can be as low as .13 under homokurtic bivariate t4.2 populations,
which demonstrates the severe lack of efficiency robustness of the pseudo-Gaussian tests.

8.2. Monte-Carlo study

In this section, we concentrate on comparing Flury’s traditional Gaussian LRT (φ
(n)
Flury)

for the null hypothesis of CPC with the pseudo-Gaussian test φ
(n)†
N of Section 6 and the

signed-rank tests of Section 7. First, we generated N = 1, 000 independent replications
of three pairs (m = 2) of mutually independent samples (with respective sizes n1 = 100
and n2 = 120) of bivariate (k = 2) random vectors

εεεℓ;1j1 and εεεℓ;2j2 , ℓ = 1, 2, 3, 4, ji = 1, . . . , ni, i = 1, 2,
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g1/g2 t4.2 t5 t6 t8 t12 N

t4.2 .1202 .1773 .1867 .1896 .1889 .1822
t5 .1963 .4286 .4987 .5378 .5538 .5528
t6 .2106 .5159 .6250 .6923 .7241 .7353
t8 .2158 .5679 .7079 .8000 .8468 .8714
t12 .2155 .5905 .7490 .8571 .9143 .9486
N .2068 .5918 .7656 .8889 .9563 1.000

Table 1. Asymptotic relative efficiencies (8.3) of the pseudo-Gaussian tests with respect
to the optimal parametric (or the optimal rank-based) ones under various bivariate

Student tν and Gaussian population densities g = (g1, g2), with r2 = 1 − r1 = 120/220.

g1/g2 t4.2 t5 t6 t8 t12 N

t4.2 .9303 .9367 .9419 .9478 .9526 .9561
t5 .9380 .9446 .9501 .9564 .9616 .9656
t6 .9443 .9513 .9570 .9636 .9691 .9738
t8 .9516 .9589 .9650 .9720 .9779 .9833
t12 .9576 .9652 .9717 .9791 .9854 .9915
N .9622 .9706 .9776 .9858 .9928 1.000

Table 2. Asymptotic relative efficiencies (8.3) of the van der Waerden tests with respect
to the optimal parametric (or the optimal rank-based) ones under various bivariate

Student tν and Gaussian population densities g = (g1, g2), with r2 = 1 − r1 = 120/220.

with bivariate standard Gaussian densities (εεε1;1j1 and εεε1;2j2 : Gaussian case), bivariate
Gaussian (εεε2;1j1) and t5 (εεε2;2j2) (non-Gaussian heterokurtic case with finite fourth-order
moments), bivariate standard t1 densities (εεε3;1j1 and εεε3;2j2 : non-Gaussian homokurtic
case with infinite fourth-order moments) and bivariate standard t5 (εεε4;1j1) and t1 (εεε4;2j2)
(non-Gaussian heterokurtic case with infinite fourth-order moments), respectively. Each
replication of the εεεℓ;1j1 ’s was transformed into

Xℓ;1j1 = βββΛΛΛ
1/2
1 εεεℓ;1j1 , ℓ = 1, 2, 3, 4, j1 = 1, . . . , n1, (8.5)

where

βββ =

(
cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

)
and ΛΛΛ1 =

(
16 0
0 8

)
,

while each replication of the εεεℓ;2j2 ’s was transformed into

Xℓ;2j2;ξ = βββBξΛΛΛ
1/2
2 εεεℓ;2j2 , ℓ = 1, 2, 3, 4, j2 = 1, . . . , n2, ξ = 0, 1, 2, 3 (8.6)

where

Bξ =

(
cos(πξ/15) − sin(πξ/15)
sin(πξ/15) cos(πξ/15)

)
and ΛΛΛ2 =

(
4 0
0 2

)
.

Clearly, the scatter matrices of Xℓ;1j1 and Xℓ;2j2;0 have common eigenvectors βββ, with
distinct eigenvalue matrices ΛΛΛ1 and ΛΛΛ2, while the eigenvectors of Xℓ;2j2;ξ, ξ = 1, 2, 3
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ξ
underlying densities g test 0 1 2 3 AREk,g( · /φ

˜
opt)

φFlury .039 .178 .504 .780 1.0000

φ†
N (= φHPV) .041 .177 .494 .722 1.0000

N , N φ
˜

vdW .031 .148 .412 .633 1.0000

φ
˜

t5,t5 .035 .147 .426 .626 .9446

φ
˜

t1,t1 .036 .110 .350 .517 .7407

φ
˜

t1,t5 .043 .146 .414 .595 .8213

φ
˜

vdW,t5 .039 .149 .433 .631 .9740

φFlury .698 .705 .704 .716 .0000

φ†
N

(= φHPV) .025 .045 .037 .037 .0000
t1, t1 φ

˜
vdW .036 .077 .198 .335 .7407

φ
˜

t5,t5 .041 .088 .261 .416 .8972

φ
˜

t1,t1 .035 .123 .295 .460 1.0000

φ
˜

t1,t5 .043 .111 .282 .436 .9505

φ
˜

vdW,t5 .035 .081 .235 .369 .8045

φFlury .478 .517 .543 .519 .0000

φ†
N (= φHPV) .230 .274 .277 .282 .0000

t1, t5 φ
˜

vdW .034 .093 .278 .414 .8091

φ
˜

t5,t5 .041 .116 .315 .481 .9348

φ
˜

t1,t1 .051 .115 .309 .487 .9571

φ
˜

t1,t5 .059 .141 .345 .528 1.0000

φ
˜

vdW,t5 .035 .103 .291 .439 .8243

φFlury .124 .236 .480 .707 .0000

φ†
N

(= φHPV) .068 .156 .374 .536 .5918
N , t5 φ

˜
vdW .040 .139 .377 .566 .9706

φ
˜

t5,t5 .049 .146 .400 .600 .9725

φ
˜

t1,t1 .049 .141 .353 .514 .8142

φ
˜

t1,t5 .067 .156 .365 .570 .8556

φ
˜

vdW,t5 .039 .144 .401 .595 1.0000

Table 3. Rejection frequencies (out of N = 1, 000 replications), under the null (ξ = 0) and three
alternatives (ξ = 1, 2, 3; see Section 8.2 for details), of the Flury test (φFlury), the pseudo-Gaussian

tests φ†
N

(= φHPV), the signed-rank van der Waerden (φ
˜

vdW—Gaussian scores in both samples),

homogeneous tν -score (φ
˜

t5,t5 and φ
˜

t1,t1—identical Student scores in both samples), heterogeneous

tν -score test (φ
˜

t1,t5—t1-scores in sample one and t5-scores in sample two) and heterogeneous

Gaussian and t5-scores (φ
˜

vdW,t5—Gaussian scores in sample one, t5-scores in sample two). Sample

sizes are n1 = 100 and n2 = 120. In the last column, we give the AREs with respect to the optimal (for
the densities under reference) rank-based test.
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differ from those of Xℓ;1j1 , thus characterizing increasingly distant alternatives to the
null hypothesis of CPC.

Rejection frequencies (based on the asymptotic chi-square critical values, at nomi-
nal 5% level) are reported in Table 3, the inspection of which reveals several well expected
facts:

(i) φ
(n)
Flury and φ

(n)†
N yield similar behaviors under Gaussian densities, but completely

blow up under densities with infinite fourth-order moments. It is however shown in

Hallin et al. (2010a) that φ
(n)
HPV = φ

(n)†
N remains valid under heterokurtic elliptical

densities with finite fourth-order moments;
(ii) the signed-rank tests, unlike their Gaussian and pseudo-Gaussian competitors, keep

the right nominal size under the null in all designs considered. They furthermore
exhibit quite good results in terms of efficiency;

(iii) despite the relatively small sample sizes n1 = 100 and n2 = 120, empirical powers
and ARE rankings almost perfectly agree.

9. Appendix.

Proofs of Lemma 7.1 and Lemma 7.2. Part(i) of Lemma 7.1 readily follows from clas-
sical asymptotic representation results for signed-rank-based statistics: see, for instance,
Lemma 4.1 in Hallin and Paindaveine (2010). Parts (ii) and (iii) are direct consequences
of Part (i), the multivariate central limit theorem, and ULAN.

We therefore concentrate on the proof of Lemma 7.2. For i = 1, . . . , n, let V̂i := β̂ββΛ̂ΛΛ
V

i β̂ββ
′

denote the root-ni consistent estimator (under H0) of the shape matrix Vi resulting

from the estimated eigenvalues Λ̂ΛΛ
V

i and estimated (common) eigenvectors β̂ββ. With that
estimated shape matrix, we get

∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
=

√
ni

2
G

β̂ββ
kL

β̂ββ, Λ̂ΛΛ
V

i

k

(
V̂⊗2

i

)−1/2
vec( Ŝ

˜ K;i
),

where Ŝ
˜ K;i

:= 1
ni

∑ni

j=1 Ki

(
Rij(ϑϑϑ(n))

n+1

)
Uij(ϑϑϑ

(n))U′
ij(ϑϑϑ

(n)). Similarly define S
˜ K;i

:=

1
ni

∑ni

j=1 Ki

(
Rij(ϑϑϑ)
n+1

)
Uij(ϑϑϑ)U′

ij(ϑϑϑ). Letting J⊥
k := Ik2− 1

kJk, note that, since n
1/2
i J⊥

k Ŝ
˜ K;i

is OP(1) as n → ∞ under P
(n)
ϑϑϑ0;g

and L
βββ,ΛΛΛV

i

k (Vi
−1/2)⊗2Jk = 0, Slutzky’s Lemma entails

∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
:=

√
ni

2
G

βββ
kL

βββ,ΛΛΛV

i

k

(
V⊗2

i

)−1/2
vec( Ŝ

˜ K;i
) + oP(1) (9.1)

as n → ∞ under P
(n)
ϑϑϑ0;g. From Lemma A1 in Hallin, Oja and Paindaveine (2006) and

Lemma 4.4 in Kreiss (1987), we have that, for ϑϑϑ(n) satisfying (E),

J⊥
k

√
ni vec ( Ŝ

˜ K;i
− S
˜ K;i

)

+
Jk(K, g1)

4k(k + 2)

[
Ik2 + Kk − 2

k
Jk

]
(Vi

−1/2)⊗2n
1/2
i vec (V̂i − Vi) = oP(1) (9.2)
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as n → ∞, still under P
(n)
ϑϑϑ0;g

. It directly follows from (9.1), (9.2) and the fact that

L
βββ,ΛΛΛV

i

k (Vi
−1/2)⊗2Jk = 0 that

∆∆∆
˜

IV ,i

ϑϑϑ(n);Ki
−∆∆∆
˜

IV ,i
ϑϑϑ;Ki

=
Jk(K, g1)

4k(k + 2)
G

βββ
kL

βββ,ΛΛΛV

i

k

(
V⊗2

i

)−1
[
Ik2+Kk

]
n

1/2
i vec (V̂i−Vi)+oP(1) (9.3)

Next, following the same argument as in the proof of Lemma 4.2 in Hallin, Paindaveine,
Verdebout (2010b), we have that

n
1/2
i vec (V̂i − Vi) = (L

βββ,ΛΛΛV

i

k )′(Gβββ
k )′n

1/2
i vec (β̂ββ − βββ) + βββ⊗2

H′
kn

1/2
i dvec(Λ̂ΛΛ

V

i −ΛΛΛV

i ) + oP(1)
(9.4)

as n → ∞ under P
(n)
ϑϑϑ0;g

. The result follows by plugging (9.4) into (9.3), then using the

fact that (L
βββ,ΛΛΛV

i

k )′
(
V⊗2

i

)−1
[
Ik2 + Kk

]
βββ⊗2

H′
k = 0.

�

Proof of Proposition 7.1 Simple algebra yields, for ϑϑϑ0 ∈ H0,

ΓΓΓIV

ϑϑϑ0,K,g(ςςς
(n))−1ΥΥΥIV = 2ΓΓΓIV

ϑϑϑ0,K,g(ςςς
(n))−1Υ̃ΥΥ,

with Υ̃ΥΥ := 1m ⊗ Ik2 . This implies that

Q
˜

(n)

ϑϑϑ0;K,g
= (∆∆∆

˜
IV

ϑϑϑ0;K)′(ΓΓΓIV

ϑϑϑ0,K,g)
⊥∆∆∆
˜

IV

ϑϑϑ0;K ,

where

(ΓΓΓIV

ϑϑϑ0,K,g)
⊥ = (ΓΓΓIV

ϑϑϑ0,K)− − (ΓΓΓIV

ϑϑϑ0,K)−ΓΓΓIV

ϑϑϑ0,K,g(ςςς
(n))−1Υ̃ΥΥ (9.5)

(
Υ̃ΥΥ

′
(ςςς(n))−1ΓΓΓIV

ϑϑϑ0,K,g(ΓΓΓ
IV

ϑϑϑ0,K)−ΓΓΓIV

ϑϑϑ0,K,g(ςςς
(n))−1Υ̃ΥΥ

)−
Υ̃ΥΥ

′
(ςςς(n))−1ΓΓΓIV

ϑϑϑ0,K,g(ΓΓΓ
IV

ϑϑϑ0,K)−.

Using Slutzky’s Lemma jointly with Lemma 7.2, we obtain that Q
˜

(n)

K
− Q
˜

(n)

ϑϑϑ0;K,g
is oP(1)

under Pϑϑϑ0,g for ϑϑϑ0 ∈ H0 and g ∈ (Fa)m iff (denoting by βββ the common eigenvector matrix
under ϑϑϑ0)

(ΓΓΓIV

ϑϑϑ0,K,g)
⊥ΓΓΓIV

ϑϑϑ0,K,g(ςςς
(n))−1Υ̃ΥΥn1/2vec (β̂ββ − βββ) = 0.

In view of (9.5), however, this follows trivially from the fact that A(A′A)−A′A = A, a
standard properties of Moore-Penrose inverses.

Now, since ΓΓΓIV

ϑϑϑ0;K (ΓΓΓIV

ϑϑϑ0;K,g)
⊥ is idempotent with trace (m − 1)k(k − 1)/2, it follows

from Theorem 9.2.1 in Rao and Mitra (1971) that Q
˜

(n)

K
is asymptotically chi-square with

(m− 1)k(k − 1)/2 degrees of freedom under P
(n)
ϑϑϑ0;g

, ϑϑϑ0 ∈ H0, and asymptotically noncen-

tral chi-square, still with (m − 1)k(k − 1)/2 degrees of freedom, but with noncentrality
parameter

lim
n→∞

{
(τττ IV )(n)′ΓΓΓIV

ϑϑϑ0;K,g(ΓΓΓ
IV

ϑϑϑ0;K,g)
⊥ΓΓΓIV

ϑϑϑ0;K,g (τττ IV )(n)
}

(9.6)

under P
(n)

ϑϑϑ0+n−1/2τττ (n);g
. Evaluation of the limit in (9.6) yields the desired result.
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(ii) The fact that φ
˜

(n)
K has asymptotic level α directly follows from the asymptotic

null distribution obtained in (i) and the classical Helly-Bray theorem.
(iii) Optimality is a consequence of the asymptotic equivalence of Q

˜
Kf

and Qϑϑϑ0,f

described in (5.3) under g = f = (f1, . . . , fm) ∈ (Fa)m. �

Proof of Proposition 6.1 (i) It follows from Theorem 4.1 in Hallin, Paindaveine and

Verdebout (2010a) that Q
(n)†
N is asymptotically chi-square with (m−1)k(k−1)/2 degrees

of freedom under P
(n)
ϑϑϑ0;g

, ϑϑϑ0 ∈ H0 and g ∈ (F4
1 )m. Lemma 6.1 implies that Q

(n)†
N is

asymptotically noncentral chi-square, still with (m − 1)k(k − 1)/2 degrees of freedom,
but with noncentrality parameter

lim
n→∞

(τττ IV )(n)′ΓΓΓg,IV
ϑϑϑ0;φ,g(ΓΓΓ

g,IV
ϑϑϑ0;φ)⊥ΓΓΓg,IV

ϑϑϑ0;φ,g (τττ IV )(n) (9.7)

under P
(n)

ϑϑϑ0+n−1/2τττ (n);g
with g∈(F4

a )m. Evaluation of the limit in (9.7) yields the result.

(ii) The fact that φ
(n)†
N has asymptotic level α directly follows from the asymptotic

null distribution in (i) and the classical Helly-Bray theorem.
(iii) Optimality is a consequence of the asymptotic equivalence under g = (φ, . . . , φ)

of Q
N (n)
ϑϑϑ0,g and Qϑϑϑ0,φ described in (5.3). �
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