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Abstract

In this paper we will study the impact of the computer on math-
ematics and its practice from a historical point of view. We will look
at what kind of mathematical problems were implemented on early
electronic computing machines and how these implementations were
perceived. By doing so, we want to stress that the computer was
in fact, from its very beginning, conceived as a mathematical instru-
ment per se, thus situating the contemporary usage of the computer
in mathematics in its proper historical background. We will focus on
the work by two computer pioneers: Derrick H. Lehmer and John von
Neumann. They were both involved with the ENIAC and had strong
opinions about how these new machines might influence (theoretical
and applied) mathematics.

1 Introduction

The impact of the computer on society can hardly be underestimated: it
affects almost every aspect of our lives. This influence is not restricted to ev-
eryday activities like booking a hotel or corresponding with friends. Science
has been changed dramatically by the computer – both in its form and in

∗The author is currently a postdoctoral research fellow of the Fund for Scientific Re-
search – Flanders (FWO) and a fellow of the Kunsthochschule für Medien, Köln.
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its content. Also mathematics did not escape this influence of the computer.
In fact, the first computer applications were mathematical in nature, i.e.,
the first electronic general-purpose computing machines were used to solve
or study certain mathematical (applied as well as theoretical) problems.
The financial force behind the first electronic digital computers was the mil-
itary establishment. The ENIAC, the first electronic general-purpose digital
computer, presented to the public on February 15, 1946 at Penn University,
was financed with U.S. army money. The original idea of building this elec-
tronic machine came from John W. Mauchly. He had always had a keen
interest in weather prediction. The available mechanical computers at that
time however were not fast enough to his idea, so he thought about building
an electronic computer using vacuum tubes (See e.g.[32]). In 1941, Mauchly
met Presper J. Eckert at the Moore School at Penn University. Eckert “was
willing and agreeable to talk about the possibility of electronic computers [...]
Nobody else really wanted to give it a second thought [32, p. 43]”. Mauchly
then wrote a memo proposing to build a very fast electronic digital computer
using vacuum tubes. Because of its speed, this new computer would be very
suitable to compute firing tables,1 an at that time attractive application for
the planned machine since the world was at war. The memo caught the at-
tention of Lieutenant Herman Goldstine, the contact between the U.S. Army
and the Moore school. He asked Mauchly to write a formal proposal to apply
for money with the army. The U.S. Army provided the money (the contract
was signed in 1943) and a team of engineers, under the direction of Eckert,
could start to build their computing machine now known as the Electronic
Numerical Integrator and Computer, the ENIAC.2

1The following quote, explains what fire tables were used for: “The army used its lush
fields and rolling hills to test artillery guns and other weapons. Since a gunner often
couldn’t see his target over a hill, he relied on a booklet of firing tables to aim the artillery
gun. How far the shell travelled depended on a host of variables, from the wind speed
and direction to the humidity and temperature and elevation above sea level. Even the
temperature of the gunpowder mattered. A gun such as the 155-millimeter “Long Tom”
required a firing table with five hundred different sets of conditions. Each new gun, and
each new shell, had to have new firing tables , and the calculations were done at Aberdeen
based on test-firings and mathematical formulas.” [30, p. 53]

2It should be noted that computing firing tables was not the sole purpose of the ENIAC.
As is recounted by Eckert: “Unfortunately, it is often said that the ENIAC was built just
for preparing firing tables. Cunningham and others at BRL all supported us in making
the ENIAC as generally useful as we could contrive to make it within the limited time that
conditions of war demanded. Yes, BRL wanted firing tables, but they also wanted to be
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The ENIAC was primarily used for military purposes. However, these mili-
tary applications were in fact applied mathematics (like the computation of
the solution of non-linear differential equations describing the path of bul-
lets and missiles) and even had certain side-results (as will be illustrated in
Sec. 3.2) which can hardly be regarded as applied. But also more theoretical
problems were implemented on the ENIAC, problems that had no connection
at all with the military purposes the ENIAC was built for (See Sec. 3.3). 3

The fact that the first electronic digital computers were used to do mathe-
matics (applied or non-applied) is remarkable, especially in the light of the
present-day usage of computers within mathematics. The purpose of this
paper is to study the impact of the computer on mathematics and its prac-
tice from a historical point of view. I will look at what kind of mathematical
problems were implemented on early electronic computing machines (focus-
ing on the ENIAC) and how these implementations were perceived by two
computer pioneers and mathematicians. In doing so, attention is given to
the fact that the electronic general-purpose computer was in fact, from its
very beginning, conceived as a mathematical instrument per se. The con-
temporary usage of the electronic general-purpose computer in mathematics
will thus be situated in its proper historical context.
We will focus on the work by two computer pioneers: Derrick H. Lehmer
and John von Neumann. They were both involved with the ENIAC and for-
mulated clear opinions about how these new machines might be used in and
have an impact on (theoretical and applied) mathematics. We will describe
four of the computer implementations they were involved with (three on the
ENIAC, one on more “modern” machines, see Sec. 3) and discuss and con-
trast their surprisingly contemporary visions on the use of the computer in
and its impact on mathematics.

able to do “interior” ballistics, and all kinds of data reduction, and they went on and on
with examples of what they would hope to be able to do with a truly flexible computer. We
wince a little when we hear the ENIAC referred to as a special-purpose computer; it was
not. The name “ENIAC,” where the “I” stands for “integrator,” was devised to help sell
the Pentagon that what the BRL was getting would compute firing tables, which were, in
1943, the greatest need of Ordnance. But there was a flexibility of control far beyond the
implications of the name.” [10, p. 526]

3A detailed list of the problems implemented on the ENIAC can be found in [12, pp.
42–45].
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2 How Lehmer and von Neumann got involved

with computers

Von Neumann and Lehmer were two mathematicians who were very enthu-
siastic about the idea of using the computer in their domain, each of them
having his own motivations for this enthusiasm. When they got the opportu-
nity to get involved with the ENIAC, the first U.S. electronic computer, they
grabbed this opportunity with both hands. In this section we will discuss
why Lehmer and von Neumann got interested in computers.

2.1 The case of Lehmer. Number-crunching in number
theory

Derrick H. Lehmer (1905-1991) was born into number theory. His father,
Derrick N. Lehmer, was a number-theorist, known for his factor table up to
10,000,000 and his stencil sheets to find factors of large numbers. But it was
not only the profession itself D.H. learned from his father [24, p. 3]:

My father did many things to make me realize at an early age
that mathematics, and especially number theory, is an experi-
mental science. If one examines the collected works of Euler,
Gauss, Legendre, to name but three, one finds them shamelessly
and laboriously computing examples of empirical discoveries. Of-
ten these efforts led to the establishment of important theorems.
Some of these discoveries remain to this day without logical links
to Peano’s axioms. Exploring in discrete variable mathematics is
generally simpler than in continuum mathematics. One can see
the input and the resulting experimental output with absolute
clarity. For the same reason a digital or discrete variable com-
puter is a better aid to discovery than an analog machine.[...] We
should regard the digital computer system as an instrument to
assist the exploratory mind of the number theorist in investigat-
ing the global and local properties of this, the natural numbers
and their algebraic expansions.

Throughout Lehmer’s papers one finds numerous statements about the ex-
perimental character of mathematics and more specifically number theory,
which he regarded as a kind of observational science. It is exactly in this
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context that one should understand Lehmer’s interest in computers. He re-
garded them as instruments to experimentally study mathematics (See Sec.
4.2 for more details). Already as a young boy, Lehmer began to design and
build small special-purpose machines, known as sieves, to assist him in his
number-theoretical work.
A sieve process is known to solve sieve problems. Following Lehmer [21] the
general problem can be stated as follows. Let m1,m2, ...,mk (the moduli) be
a set of k (the width) positive integers. For each mi we consider ni distinct
arithmetical progressions denoted by:

Pij(x) = mix+ aij

{
i = 1, 2, ..., k
j = 1, 2, ..., ni

We assume that for i fixed, the aij are distinct non-negative integers less than
mi. The problem is then to find all integers N between given limits A and
B such that each N belongs to k arithmetical progressions. An example of
such a sieve problem is the problem to find the least positive integer of the
form: {

3x+ 1 or 2
7x+ 3 or 5

One famous example of a sieve is the sieve of Erasthotenes to compute prime
numbers.
Lehmer was made familiar with sieves through his father, who used a sieve
technique called the stencil method to construct his factor table [25]. How-
ever, this method was still quite slow and cumbersome and this is why Lehmer
started wondering about building machines that could do the work for him.
His first sieve, dated 1926, was an electro-mechanical sieve built with bicycle
chains. It eliminated values X at the rate of 60 per second and had a width
k of 16. As Lehmer notes about this machine: “It was a genuine parallel
machine” [25, p. 447]. Ten years later, Lehmer built another electromechan-
ical sieve using 16 mm film, where the values aij were little round holes in
the main tape. Four years before, in 1932, Lehmer had also built a photo-
electric sieve, using a beam of light that “entered on one side and tried to
run the gauntlet of the holes to reach a photocell and find the first answer”
[25, p. 448–449]. It ran at 5000 counts per second, and was thus faster than
the electro-mechnanical ones. The next sieve Lehmer was to “build” was an
implementation on the ENIAC (See Sec. 3.3).
When World War II began, Lehmer “got involved into war work mostly hav-
ing to do with the analysis of bombing [28, p. 3]”. He built a special-purpose
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machine, a “bombing analyzer [which] was a combination of the digital and
the analog device. [...] I demonstrated it in Washington one time at the
Pentagon. [...] This thing was Army Ordnance, I guess. [31, pp. 16–17]”.
Just after the war Lehmer was called upon by the Ballistic Research Labora-
tories (Aberdeen Proving Ground) to become a member of the ‘Computations
Committee’, which was assembled to prepare for utilizing the ENIAC after
its completion [1, p. 693]. The ENIAC was to be extensively test-run during
its first months by members of this committee. Besides Lehmer, the com-
mittee included Haskell B. Curry, Leland B. Cunningham and Franz Alt.
They implemented non-military problems of which some were pure theoret-
ical ones. The at that time revolutionary fast and highly parallel ENIAC,
doing no less than 5000 additions per second, must have been very appealing
to Lehmer. He already had a keen interest in computing machines, especially
parallel ones for building sieves, and was very well aware that this kind of
increase in computational speed could be invaluable to solve or study certain
mathematical problems.
After his experience with the ENIAC, Lehmer remained in computing and
worked on several of the early post-war American computers like the SWAC,
exploring the universe of numbers in ways that had been impossible before.

2.2 The case of von Neumann: Number-crunching in
Physics

John von Neumann is far more famous than D.H. Lehmer, not in the least
because the hardware of computers nowadays is still referred to as ‘the von
Neumann architecture’.4 He was a mathematician by education and made

4This however should not be taken for granted. One of the basic reasons for von
Neumann’s name being connected to the invention of the modern computer has to do with
the fact that it is his name and none other that is associated with the First draft of a Report
on the EDVAC [40] – the EDVAC being identified with the von Neumann architecture.
The history of who really invented the first electronic digital general-purpose and (!)
stored-program computer is still a matter of debate. Many people believe von Neumann
is the inventor of the stored-program computer but, as far as my knowledge goes, there
is no real convincing and/or definite evidence proving that it was really von Neumann
who deserves all the credit. Eckert and Mauchly, and with them several other people
who were involved, like Jean Bartik one of the ENIAC programmers and employee of the
Eckert-Mauchly computer cooperation, have contradicted this. Moreover, one should not
neglect the fact that Besides the adjective stored-program, modern computers are also
electric and general-purpose, two features the ENIAC already had and which are at least
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major contributions in many different fields, including: mathematical logic,
set theory, economics and game theory, quantum mechanics, hydrodynamics,
computer science,...
Von Neumann’s acquaintance with the field of mathematical logic had a
major influence on his work on computers. He had been there in 1930 at
the conference in Königsberg where Gödel announced his now famous in-
completeness results for the first time. He was also fully aware of Turing’s
seminal paper [37] that not only contained a negative solution to the Entschei-
dungsproblem, but also an “algorithmic” description of the universal Turing
machine, a theoretical machine that can be regarded as the theoretical ver-
sion of the stored-program computer.5 After Gödel’s results von Neumann
wanted to stay far away from logic. But then he got involved with the ENIAC
project, and with “real” computing. In this context von Neumann’s logical
background would prove very useful.
It was not his interest in logic, however, that triggered his interest in the sub-
ject. In [39], Ulam explains why von Neumann got interested in computers
(pp. 93–94):

It must have been in 1938 that I first had discussions with von
Neumann about problems in mathematical physics, and the first
I remember were when he was very curious about the problem
of mathematical treatment of turbulence in hydrodynamics. [...]
He was fascinated by the role of Reynolds number, a dimension-
less number, a pure number because it is the ratio of two forces,
the inertial one and the viscous [...] [von Neumann] [...] wanted
to find an explanation or at least a way to understand this very
puzzling large number. [...] I remember that in our discussions
von Neumann realized that the known analytical methods, the
method of mathematical analysis, even in their most advanced
forms, were not powerful enough to give any hope of obtaining

as fundamental as the stored-program idea (not in the least because stored-program only
makes sense if one already has a general-purpose computer). This paper however is not
the proper place to discuss these matters. For more information, the reader is referred to
some of the existing literature [5, 6, 10, 13, 29, 30] to form his/her opinion on the matter.
In any way, one must be very careful in these matters.

5As is argued in [15] and [8], based on a letter by Ulam to Hodges
([15], p. 145) (available on-line through Andrew Hodges website on Turing:
http://www.turing.org.uk/sources/vonneumann.html) von Neumann must have read Tur-
ing’s paper before the outbreak of the war.
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solutions in closed form. This was perhaps one of the origins of
his desire to try to devise methods of very fast numerical compu-
tations, a more humble way of proceeding. Proceeding by “brute
force” is considered by some to be more lowbrow. [...] I remember
also discussions about the possibilities of predicting the weather
at first only locally, and soon after that, about how to calculate
the circulation of meteorological phenomena around the globe.

Von Neumann got particularly interested in computers for doing numerical
calculations in the context of theoretical physics and thus understood, quite
early, that fast computing machines could be very useful in the context of
applied mathematics.
In 1943, during World War II, von Neumann was invited to join the Manhat-
tan project – the project to develop the atomic bomb – because of his work
on fluid dynamics. He soon realized that the problems he was working on
involved a lot of computational work which might take years to complete. He
submitted a request for help, and in 1944 he was presented a list of people he
could visit. He visited Howard Aiken and saw his Harvard Mark I (ASCC)
calculator. He knew about the electromechanical relay computers of George
Stibitz, and about the work by Jan Schilt at the Watson Scientific Computing
Laboratory at Columbia University. These machines however were still rela-
tively slow to solve the problems von Neumann was working on. But then he
accidentally met Herman Goldstine at Aberdeen railwaystation. While wait-
ing for their train on the platform, Goldstine told him about the top-secret
ENIAC project at the Moore school [13]. Von Neumann got very excited, and
Goldstine made arrangements (providing the necessary clearance document)
so that von Neumann could visit the ENIAC. As is recounted by Eckert, “his
first visit could not have been before 7 September 1944. In my own records,
which also became a court document, is confirmation that Eckert and I had a
commitment to meet von Neumann about 7 September. I believe that was our
first meeting with him. [10]” After this first visit, he was a frequent visitor
of the ENIAC.
He became one of the major contributors to the design of what is known as
the first electronic, general-purpose stored-program computer, the EDVAC
(See footnote 4). The main design ideas for the EDVAC were described by
von Neumann in the first draft of this machine [40]. Even though it is not
completely clear who contributed what to the design, the emphasis on the
logical aspects of the EDVAC must be credited to von Neumann. He also
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made important contributions to the rewiring of the ENIAC at Aberdeen,
since the permanent set of instructions to be internalized were chosen with
von Neumann’s consultation.6 As was the case for Lehmer, von Neumann
never really left the domain of computers once he got involved with them.
He laid the foundations for several research topics within computer science
that are up until today very much alive, like research on cellular automata
–which he co-invented.
Von Neumann died in 1957 of bone cancer, possibly caused by exposure to
radiation during (one of) the A-bomb tests at the Bikini islands.

3 Four Examples of Early mathematical (ap-

plied and theoretical) computations.

As is clear from Sec. 2, von Neumann and Lehmer each had their own motives
to be interested in computers: Lehmer wanted to use computers mainly to
study and solve theoretical problems in number theory, while von Neumann
wanted to use them in applied mathematics, like fluid dynamics. In this
section, we will describe four examples of early mathematical computations in
which von Neumann and Lehmer were involved. The difference between their
interests is also apparent from these examples, a difference that converges
with their views on the use of computers within mathematics to be discussed
in Sec. 4.

3.1 The Monte Carlo method and the H-bomb

The ENIAC was built with army money and thus had to devote its “official”
time to military computations. At the time von Neumann got involved with
the ENIAC, he was already a consultant to Los Alamos. It was he who first

6Neukom’s paper [35] gives a detailed description of “the ENIAC’s second life”. It
should also be noted here that while the usual account on the rewiring of the ENIAC is
that von Neumann suggested the idea and Clippinger detailed out the design, Metropolis
tells us a slightly different story: “In the meantime Richard Clippinger, a staff member
at Aberdeen, had suggested that the ENIAC had sufficient flexibility to permit is controls
to be reorganized into a more convenient (albeit static) stored-program mode of operation.
[...] Although implementing the new approach is an interesting story, suffice it to say that
Johnny’s wife, Klari, and I designed the new controls in about two months and completed
the implementation in a fortnight.” ([33], p. 128).
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suggested to prepare “a preliminary computational model of a thermonuclear
reaction for the ENIAC.” As is recounted by Metropolis [33, p. 126]:

For a whole host of reaons [von Neumann] had become seriously
interested in the thermonuclear problem being pawned at that
time in Los Alamos by a friendly fellow-Hungarian scientist, Ed-
ward Teller, and his groups. Johnny (as he was affectionally
called) let it be known that construction of the ENIAC was near-
ing completion, and he wondered whether Stan Frankel and I
would be interested in preparing a preliminary computational
model of a thermonuclear reaction for the ENIAC. He felt he
could convince the authorities at Abeerdeen that our problem
could provide a more exhaustive test of the computer than mere
firing-table computations. [...] Our response to von Neumann’s
suggestion was enthusiastic, and his heuristic arguments were ac-
cepted by the authorities at Aberdeen.

After von Neumann, Frankel and Metropolis had visited the ENIAC, Frankel
and Metropolis began to work on a model that was realistically calculable
and the computations were then implemented on the ENIAC. In the spring
of 1946, a review of the ENIAC results was held at Los Alamos. Among
the people present was also Stan Ulam. He was very much impressed by the
speed and versatility of the ENIAC and understood that this machine could
be just the thing needed to implement an idea he had been pondering about
for some time, i.e., the use of what is now known as the Monte Carlo method
for thermonuclear computations.7 As Ulam recounts (Remark dated 1983,
quoted in [11, p. 131]):

The first thoughts and attempts I made to practice [the Monte
Carlo Method] were suggested by a question which occurred to
me in 1946 as I was convalescing from an illness and playing soli-
taires. The question was what are the chances that a Canfield
solitaire laid out with 52 cards will come out successfully? After
spending a lot of time trying to estimate them by pure combina-
torial calculations, I wondered whether a more practical method
than “abstract thinking” might not be to lay it out say one hun-
dred times and simply observe and count the number of successful

7In fact the name “Monte Carlo” goes back to a story about Ulam’s uncle, who would
borrow money from relatives because “he just had to go to Monte Carlo” [33].
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plays. This was already possible to envisage with the beginning
of the new era of fast computers, and I immediately thought of
problems of neutron diffusion and other questions of mathemati-
cal physics, and more generally how to change processes described
by certain differential equations into an equivalent form inter-
pretable as a succession of random operations. Later [in 1946, I]
described the idea to John von Neumann and we began to plan
actual calculations.

After having heard about the ENIAC’s possibilities, Ulam discussed his ideas
on using the Monte Carlo method for tackling problems in nuclear physics,
and the possibility of implementing it on the ENIAC, with von Neumann.
He immediately understood the significance of Ulam’s suggestion. In March
1947 he wrote a letter to Robert Richtmyer, at that time the Theoretical
Division leader at Los Alamos, explaining why the statistical approach sug-
gested by Ulam was very well suited for a digital treatment.
The Monte Carlo method can be used as a way to explore the behavior of
various physical and mathematical systems, in order to make certain predic-
tions about these systems. It was particularly well-suited for exploring the
behavior of neutron chain reactions in fission devices. The basic idea is to
use a randomly distributed sample, and look at what happens to the sample,
or to make certain random decisions that determine the future behaviour of
the sample. Metropolis explained how the method could be used, describing
an example from von Neumann in his letter to Richtmyer, as follows [33,
p.127]:

Consider a spherical core of fissionable material surrounded by
a shell of tamper material. Assume some initial distribution of
neutrons in space and in velocity but ignore radiative and hy-
drodynamic effects. The idea is to now follow the development
of a large number of individual neutron chains as a consequence
of scattering, absorption, fission and escape. [...] [A] genealog-
ical history of an individual neutron is developed. The process
is repeated for other neutrons until a statistically valid picture
is generated. [...] How are the various decisions made? To start
with, the computer must have a source of uniformly distributed
pseudo-random numbers.

In 1947, after the ENIAC was rewired and moved to its permanent home at
the Ballistics Research Lab in Maryland (see footnote 6), the first ambitious
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test of the Monte Carlo method was implemented [33, p.128]:

Nine problems were computed corresponding to various configu-
rations of materials, initial distributions of neutrons and running
times. [...] The neutron histories were subjected to a variety of
statistical analyses and comparisons with other approaches. Con-
clusions about the efficacy of the method were quite favorable. It
seemed as though Monte Carlo was here to stay.

The first tests were successful, and the Monte Carlo method became a stan-
dard method for doing computations on problems connected to the H-bomb-
design.
However, in order for the Monte Carlo to be successful, the computer must
first have a source of random numbers. It occurred to von Neumann that the
computer could be programmed to generate its own random numbers and so
he became interested in sequences of computable random numbers, sequences
that are nowadays known as pseudo-random.

3.2 Are π and e random?

Anyone who considers arithmetical methods of producing random digits is,
of course, in a state of sin. [42]

Von Neumann’s interest in the statistical properties of numbers like π and e
should, most probably, be understood in the context of the use of the Monte
Carlo method on the ENIAC. In 1949 he suggested to use the ENIAC to
compute the first 2000 decimal values of π and e in order to get an idea
about their statistical distribution ([36, p. 11]):

Early in June, 1949, Professor John von Neumann expressed an
interest in the possibility that the ENIAC might sometime be
employed to determine the value of π and e to many decimal
places with a view toward obtaining a statistical measure of the
randomness of distribution of the digits [...]

The computations for e were finished in July 1949, those for π during Labor-
Day weekend, in September 1949.8 In [34] and [36] set-up and results are

8As was the case for several more theoretical computations done on the ENIAC, these
were all done outside the “official time”, during holidays. As Reitwiesner [36] explains,
four members of the ENIAC staff and Reitwiesner himself did 8-hours shifts to keep the
ENIAC operating continuously throughout the Labor-day weekend.
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discussed: the first 2000 decimal digits of both numbers were computed.
A statistical analysis (by hand) of the data led to the conclusion that “the
material has failed to disclose any significant deviations from randomness for
π, but is has indicated quite serious ones for e.” ([34], p. 109).9

3.3 The first extensive number-theoretical computa-
tion on the ENIAC

On the Friday of the 4th of July week-end in 1946, the Lehmer family –
Derrick, Emma and two teenage kids – arrived at the Moore school where
they met John Mauchly. He helped them set up the ENIAC for the imple-
mentation of an interesting number-theoretical problem and stayed on as an
operator through the week-end [25, p. 451]. As is explained by Franz Alt,
what made the problem particularly interesting [17, p. 40]:

[...] was that this was a difficult enough problem that it attracted
the attention of some mathematicians who could say, yes, an elec-
tronic computer could actually do an interesting problem in num-
ber theory – something as sophisticated in number theory – and
produce useful results. There were many people who speculated
about this – von Neumann among them – but to actually do it,
to demonstrate it, was, I think, important to the post-war repu-
tation of electronic computers among mathematicians.

The problem concerned the converse of Fermat’s little theorem which states:

Theorem 1 If ap−1 ≡ 1 mod p than p is prime

This converse gives a good (read fast) test for primality. Unfortunately this
converse is not true in general: there are certain p for which ap−1 ≡ 1 mod p
with p not a prime number. If one wants to use this primality test, one needs
a list of exceptions to the theorem. This is exactly what Lehmer wanted to

9It is interesting to point out that part of the research on the random character of the
digits in π is still situated in a more heuristic research context. Recently, an important
paper was published in the journal Experimental Mathematics on this topic [2], in which
it is shown that the statistical randomness of several constants, including π, depends on
an hypothesis concerning the distribution of the iterates of certain dynamical maps, and
is thus situated in a branch of mathematics, characterized by the numerous computer
experiments underlying it, i.e., chaos theory.
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do.
Taking a equal to 2 (which is computationally the most advantageous choice),
one way to compute the composite p’s for which 2p−1 ≡ 1 mod p is to use
a table of exponents e of 2 modulo the prime p, e being the least value n
such that 2n ≡ 1 mod p and e is some divisor of p − 1 = ef .10 Kräıtchik
published such an exponent table in 1924 for p < 300000, but it contained
quite some errors [18]. Lehmer now proposed to use the ENIAC to compute a
table of exponents correcting and extending Kräıtchik’s table to p < 4.5 ·106.
The results of Lehmer’s calculation on the ENIAC were published as a list
of corrigenda to Kräıtchik’s table in 1947 (MTAC 2 (19) p. 313). In 1949
an article discussing some computational details of setting up this ‘program’
on the ENIAC appeared [19]. It was exactly for this problem that Lehmer
implemented his first sieve on an electronic general-purpose computer.
As Lehmer remarks right at the beginning of his description of the ENIAC
set-up: “The method used by the ENIAC to find the exponent of 2 modulo
p differs greatly from the one used by human computer” [19, p. 301]. The
exponent e of 2 modulo a prime p should either be a divisor of or equal to
p− 1, and one can thus restrict oneself to doing trial divisions with suitable
divisors of p − 1 only. On the ENIAC however, it was more expeditive to
compute 2t for all t < p − 1. This ‘idiot approach’ takes, in the worst case,
“less than 2.4 seconds, less time than it takes to copy down the value of p”,
whereas the sophisticated method requires “much outside information via
punched cards [...] to be prepared by hand in advance.” [19, p. 302]. We will
not discuss the details of the implementation here. For more information the
reader is referred to [9].

3.4 One of the first machine proofs. A result on cubic
residues.

In 1962 a paper titled Machine Proof of a Theorem on Cubic Residues [26]
appeared by D.H. Lehmer, Emma Lehmer, W.H. Mills and J.L. Selfridge,
containing a description of what can be considered as one of the first real
machine proofs, i.e., the proof of a theorem that has not (and cannot) be
proven by a human being. Other, far more famous (but younger) examples,
are of course the machine proof of the four color theorem by Appel and Haken

10More details about how to use these exponents to find composite numbers can be
found in [18].
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and the still not completely accepted proof of the sphere packing problem by
Thomas Hales. The machines used were the IBM 701, 704, 709 and 7090.
To understand the theorem it is important to first explain the notion of cubic
residues. If p is a prime of the form 6m+ 1 the numbers

13, 23, ..., (p− 1)3

when reduced modulo p consist of only (p − 1)/3 = 2m distinct numbers
between 1 and p − 1. These 2m numbers are the cubic residues of p. For
example, the cubic residues of 13 are 1, 5, 8 and 12. A prime p = 6m + 1
is called exceptional if it does not have a triplet of cubic residues, where a
triplet is any set of three consecutive positive integers. It had already been
proven by Brauer in 1928 that all “sufficiently large” primes have a triplet
of cubic residues. Thus there are only a finite number of exceptional primes.
However, as Lehmer notes “[b]y using machine methods we have proved much
more [26, p. 407]”. Indeed, the theorem that was proven by the IBM ma-
chines is:

Theorem 2

(a) The only exceptional primes are:

2, 3, 7, 13, 19, 31, 37, 43, 61, 67, 79, 127, 283

(b) Every non-exceptional prime has a triplet of cubic residues that does not
exceed:

(23532, 23533, 23534) (1)

(c) There are infinitely many primes whose smallest triplet of cubic residues
is (2). Hence, result (b) is the best possible.

Initially they were unsure about the outcome of the machines, because
nobody could know in advance whether the proof tree that had to be con-
structed would come to a halt. The limit of 55 “stories” for each branch of
the proof tree was determined by the machine. Furthermore, the “world con-
stant” 23532 , as Lehmer called it, was found by the machine, independent
of the method of proof.
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We cannot discuss the details of the set-up and proof here. Still it is im-
portant to point out some important features of this machine proof, as they
were emphasized by Lehmer. First of all to obtain (a), (b) and (c) an infinite
number of cases was reduced to a finite number of cases by the computer
which makes the theorem a genuine theorem according to Lehmer: “a gen-
uine theorem should be a statement about an infinite class or should make
an infinite number of statements in its conclusion. [22]”. Secondly, Lehmer
emphasizes the significance of man-computer interaction for the result [26,
pp. 407–408]:

In our work, instead of starting with axioms, we did not hesitate
to use any device or previously known result that might be useful.
In particular, the authors aided and abetted the machine in its
search for a theorem and its proof. Nevertheless, all three results
(a), (b), and (c) are due to the machine. Even the verification
of these results using data supplied by the machine would be far
too long and hazardous a calculation to do by hand.

Last, because the proof is humanly impractical “ no one has all the de-
tails. The machine was asked to make progress reports from time to time and
studying these reports we can follow the proof in broad outline only. [22]”

4 Lehmer’s and von Neumann’s different vi-

sions on mathematics and the computer.

It is interesting to see how von Neumann’s and Lehmer’s particular interests
(See Sec. 2) got them involved with quite different examples of early compu-
tations. The Monte Carlo method and its use for the H-bomb computations
is (very clearly) to be situated within the field of applied mathematics. The
question on the random character of π and e is quite theoretical, but, von
Neumann’s interest in the problem was not that innocent: there was a definite
reason for being interested in randomness generated by simple mathematical
functions. The computations done by Lehmer are very different from these
first two: they are number-theoretical problems that did not have any im-
mediate application at their time and might even be called “exotic”.
This kind of difference between applied and theoretical mathematics can also
in part be found in von Neumann’s and Lehmer’s thoughts on mathematics
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and how (certain parts of) it could be studied with the help of the computer.
However, there are also some very clear similarities between their points of
view, not in the least because they both situated the mathematical use of
the computer within an experimental setting.

4.1 Von Neumann’s point of view.

In a talk entitled The Mathematician [41] von Neumann formulated the fol-
lowing view on mathematics:

I think that it is a relatively good approximation to truth [...]
that mathematical ideas originate in empirics, although the ge-
nealogy is sometimes long and obscure. But, once they are so
conceived, the subject begins to live a peculiar life of its own and
is better compared to a creative one, governed by almost entirely
aesthetical motivations, than to anything else and, in particular,
to an empirical science. [...] As a mathematical discipline travels
far from its empirical source, or still more, if it is a second and
third generation only indirectly inspired by ideas coming from
“reality”, it is beset with very grave dangers. It becomes more
and more purely aestheticizing, more and more purely l’art pour
l’art. [...] there is a grave danger that the subject will develop
along the line of least resistance, that the stream, so far from its
source, will separate into a multitude of insignificant branches,
and that the discipline will become a disorganized mass of details
and complexities. In other words, at a great distance from its
empirical source, or after much ”abstract” inbreeding, a math-
ematical subject is in danger of degeneration. At the inception
the style is usually classical; when it shows signs of becoming
baroque, then the danger signal is up. It would be easy to give
examples, to trace specific evolutions into the baroque and the
very high baroque, but this, again, would be too technical. In
any event, whenever this stage is reached, the only remedy seems
to me to be the rejuvenating return to the source: the reinjection
of more or less directly empirical ideas. I am convinced that this
was a necessary condition to conserve the freshness and the vi-
tality of the subject and that this will remain equally true in the
future.
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For von Neumann mathematical ideas originate in an empirical reality. If
these empirical roots get obscured, mathematics is in danger of degeneration.
His interest in connecting mathematics with more empirical sciences like
physics, thus has a clear motivation: it prevents mathematics from becoming
highly baroque, or, maybe even worse, ‘l’art pour l’art’. Von Neumann’s
interest in connecting empirical with more theoretical ideas form the proper
background for understanding his interest in computers.
But what kind of role did he exactly have in mind for these new computing
machines in the context of mathematics? In Sec. 2 we already mentioned
that according to Ulam, von Neumann got interested in computers, due to the
realization that some of the usual methods of mathematics were not enough to
study certain problems in mathematical physics. Number-crunching seemed
a good alternative to these methods. However, once von Neumann realized
the full potentiality of the new computing machines, he understood that
although any computer is essentially nothing more but a “number-cruncher”,
it can play a much more important role in mathematics and, more generally,
science.
That von Neumann assigned an important role to computers within those
parts of science that can be tackled from a more mathematically oriented
approach, is apparent when one goes through some of his later works. We
will not discuss these in any details here, but we should at least mention
von Neumann’s work on natural and artificial automata. One of the texts he
wrote in this context, The computer and the brain [43], which is a published
version of the prestigious Silliman lectures and the last text written by von
Neumann, contains clear statements about the significance of a complete
theory of artificial automata for the development of a complete theory of the
nervous system.
Besides discussing the possibilities of using computers within other domains
like physics or biology – thus providing a mathematical approach to study
problems in more “down-to-earth” domains (see e.g. the introduction of
[43]) – he also made some explicit remarks about how the computer should
be used within mathematics, and what kind of things it should produce.
Most interesting here are the five lectures he gave at Illinois University in
1949, published as a series of annotated texts by Burks [45].
First of all, he was convinced that computers should not be used to produce
vast amounts of data [45, pp. 38–39]:

[...] let me point out that we will probably not want to produce
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vast amounts of numerical material with computing machines,
for example, enormous tables of functions. The reason for us-
ing fast computing machines is not that you want to produce a
lot of information. After all, the mere fact that you want some
information means that you somehow imagine that you can ab-
sorb it, and, therefore, wherever there may be bottlenecks in the
automatic arrangement which produces and processes this infor-
mation, there is a worse bottleneck at the human intellect into
which the information ultimately seeps. The really difficult prob-
lems are of such a nature that the number of data which enter is
quite small. All you may want to know is a few numbers, which
give a rough curve, or one number. All you may want in fact is a
“yes” or a “no,” the answer as to whether something is or is not
stable, or whether turbulence has or has not set in.

According to von Neumann, computers should indeed not be used to produce
(or store) large tables of information to be studied or used by man, because
we simply cannot cope with so much information. Rather, a computer should
provide definite and not too long answers after a program has been executed.
As we will see in Sec. 4.2, this stands to some extent in contrast with the
significance Lehmer attached to the production and inspection of tables by
computers.
Secondly and more importantly, von Neumann became convinced that the
computer could be used to solve certain problems for which both mere phys-
ical experimentation as well as theoretical considerations fail. For him, the
computer could be the means to build up an intuition of such problems, and
thus to get better heuristic ideas ([45], pp. 33–35):

In pure mathematics the really powerful methods are only ef-
fective when one already has some intuitive connection with the
subject, when one already has, before a proof has been carried
out, some intuitive insight, some expectation which, in a majority
of cases, proves to be right. In this case one is already ahead of
the game and suspects the direction in which the result lies. A
very great difficulty in any new kind of mathematics is that there
is a vicious circle: you are at a terrible disadvantage in applying
the proper pure mathematical methods unless you already have
a reasonably intuitive heuristic relation to the subject and unless
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you have had some substantive mathematical successes in it al-
ready [...] progress has an autocatalytic feature. Almost all of the
correct mathematical surmises in [the area of the non-linear sci-
ences] have come in a very hybrid manner from experimentation.
If one could calculate solutions in certain critical situations [...]
one would probably get much better heuristic ideas. [...] there
are large areas in pure mathematics where we are blocked by a
peculiar inter-relation of rigor and intuitive insight, each of which
is needed for the other, and where the unmathematical process of
experimentation with physical problems has produced almost the
only progress which has been made. Computing, which is not too
mathematical either in the traditional sense but is still closer to
the central area of mathematics than this sort of experimentation
is, might be a more flexible and more adequate tool in these areas
than experimentation.

To von Neumann, the computer was a means to “de-block” certain areas
of mathematics for further exploration, allowing to build up an intuition of
a certain problem. By e.g. solving certain special cases of a given set of
equations numerically, which is easily obtained by varying the parameters,
one can “get a feeling for such phenomena as turbulence and shock waves,
and with this qualitative orientation [can] pick out further critical cases to
solve numerically, eventually developing a satisfactory theory. ([4] pp. 2–3)”
Although the task the computer has to perform seems quite inessential – in
the end, it “merely” computes faster than we can, and, in the meantime,
stores and processes more information than we can – it has shown itself an
indispensable tool in several branches of science in the way von Neumann
believed they would be useful. To give just one example, the area of fractal
geometry and chaos theory would probably have remained “blocked” were
it not for the computer. The best way to explore this domain is to do
computing and visualizations of the numbers computed. The role “computer
experiments” have played in this domain can hardly be overestimated, i.e.,
most results and conjectures go back to such “experiments”.

4.2 A number theorist’s point of view

While von Neumann believed that it was fundamental for, if not inherent to,
mathematics to be rooted in the “real world”, this was never really the issue
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for Lehmer. He was a number-theorist and could sometimes even get quite
annoyed with the fact that more and more money and computer time was
being invested in applications.11

As we know from Sec. 2.1, Lehmer learned from his father that mathematics
and more specifically number theory is an experimental science. This view
shaped his understanding of computers within mathematics: for him, they
were instruments to explore aspects of the universe of mathematics [20, p.
146]:

There is no doubt that these new machines are creating new ser-
vice jobs for mathematicians, young and old. However, it seems to
me, the most important influence of the machines on mathemat-
ics and mathematicians should lie in the opportunities that exist
for applying the experimental method to mathematics. Much of
modern mathematics is being developed in terms of what can be
proved by general methods rather than in terms of what really
exists in the universe of discourse. Many a young Ph.D. student
in mathematics has written his dissertation about a class of ob-
jects without ever having seen one of the objects at close range.
There exists a distinct possibility that the new machines will be
used in some cases to explore the terrain that has been staked out
so freely and that something worth proving will be discovered in
the rapidly expanding universe of mathematics

These are quite remarkable words by Lehmer: he was convinced that the
computer would make it possible for the mathematician to explore objects
existing in the “world” of mathematics, which were quite inaccessible before.
This position stands in contrast with Von Neumann’s: for Lehmer mathe-
matics is a world worth exploring for its own sake. Despite this fundamental
difference, they both situated the use of computers in mathematics in an
experimental or heuristic context.

11This is e.g. very clear from the following quote: “In fact, it is sometimes a little
exasperating for the number theorist to assist the applied mathematician in juggling round-
off errors, truncating errors and a flitting decimal point in order to adapt a problem in fluid
mechanics to a discrete-variable machine when all the time the machine, being digital, is
all ready to work on clear-cut problems involving whole numbers. However, I realize that
this exasperation is shared by very few present. Most of you will be relieved to know that,
to the best of my knowledge, very little valuable time on large-scale computing has been
spent on such unprofitable problems. [20]”
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Von Neumann had a very articulated view on how to use the computer in
mathematics, as is clear from what he did in and wrote on the subject.
The same goes for Lehmer, but there are far more explicit statements by
Lehmer on the computer’s role in mathematics. In a paper, titled Computer
Technology applied to the Theory of Numbers [23] he sums up the different
possibilities for using the computer in number theory “in order of increasing
machine involvement”, answering the question “Why might a number theo-
rist want to add pulse circuitry to pencil and paper?”
First of all, the machine can be used in the search for counterexamples [23,
p. 118]:

By using a machine, one’s ability to explore is enormously en-
hanced and so one may be fortunate enough to discover at least
one value of n for which the statement is patently false. This
settles the question of the truth value of the statement, once and
for all.

By searching for counter examples, important conjectures might be dis-
proved. If no counter example is found, this kind of computational work
is still very useful, since the truth of the conjecture tested is experimentally
supported. One of the earliest examples of this method on an electronic com-
puter was implemented by Turing in June 1950 on the Manchester University
Mark I. It concerned the search for non-trivial zeros of the Riemann-zeta
function for which the real part is different from 1/2, i.e., finding counter
examples to the Riemann hypothesis [38, p. 99]. This approach is still used
today for several different mathematical conjectures, including the Riemann
hypothesis. Other famous examples are the Collatz problem and Goldbach’s
conjecture.
Unsuccessful searches for counter examples, or, put more positively, testing
a large number of cases to verify the truth of a given conjecture, can also be
used to come to a better understanding of why a given conjecture seems to
be true [23]:

Although we cannot obtain a proof by this device, there is the
possibility that a careful analysis of many cases will reveal “why”
the proposition is generally true and thus the machine has helped
by leading to the idea of the proof. If properly directed, the
machine itself can undertake this analysis.
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This kind of use of the computer in mathematics is comparable to von Neu-
mann’s view on the use of the computer to build up an intuition of a given
problem: by analyzing several special cases, one may come to a better un-
derstanding of a given problem and/or get better heuristic ideas to solve the
problem.
Another important usage of the computer mentioned by Lehmer is the pro-
duction and inspection of tables by computers [23, p. 118]:

Most of the important classical theorems in number theory were
discovered as a by-product of the production and inspection of
tables. These were constructed by hand. The modern machine
can produce tables with speed and reliability many orders of
magnitude greater than what is humanly possible. Not only is
the publication of such tables impossible; even the inspection is
well beyond human capability. It soon becomes apparent that it
should be the machine’s responsibility to make this inspection,
with, of course, a little sound advise of the programmer.

Lehmer’s interest in the production and inspection of tables by computers
should not be surprising. He learned from his father that they were basic tools
for doing number theory. The production of tables with the aid of computers
was one very early use of the electronic digital computer, as is clear from
examples 2 and 3 (Sec. 3). In Sec. 4.1 we saw that von Neumann did not see
any use in producing vast amounts of data by the computer, because man is
not capable of processing large data sets. Also Lehmer understands this: from
a given order of magnitude onward, man is no longer capable of inspecting
large tables. However, this did not imply for Lehmer that computers should
not be used to produce tables. If the size of the tables becomes humanly
impractical, the task of inspecting tables should simply be “outsourced” to
the computer itself. However, this ‘automated’ inspection cannot be done
without the help of the programmer: he has to instruct the machine what
kind of inspection it must perform. In this sense, the programmer himself
must know the tables produced to some extent.12 This kind of interaction

12It is interesting to point out that because of the computer, huge amounts of data have
indeed become available (one only has to think of the internet). In order to handle this
amount of information, one has to invent certain techniques, techniques that are in their
turn internalized into the computer. Recently a new journal called Internet Mathematics
has been founded, that is devoted to fundamental problems that occur in dealing with
large complex information networks such as the Internet.
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between man and machine, each making a significant contribution to the
solution or study of a given mathematical problem, has been emphasized
quite frequently by Lehmer (See also example 4, Sec. 3.4).
One further step in the order of increasing machine involvement is the use
of the computer to verify the truth of a large but finite number of different
statements. As Lehmer notes, also this kind of problem is not very suitable
for humans [23, p. 119]:

This kind of activity is not well suited to humans, not only be-
cause of the large number of different things to do, but also be-
cause of the complexities of the relationships or arrangements of
the things themselves. Fortunately, the modern digital computer
is not only very fast but also very adroit in handling combinato-
rial complexities when carefully programmed.

This kind of computer usage has had many applications. A less well-known
but nonetheless equally “important” example, is the use of such methods for
computing busy beaver functions Σ(n,m), i.e., the maximum number of 1’s
that can be produced by a Turing machine with m states and n symbols,
when started on a blank tape (See e.g. [27]). Brady, who solved one of the
cases with the help of the computer, described this approach as follows [3, p.
647]:

The four-state case has previously been reduced to solving the
blank input tape halting problem of only 5820 individual ma-
chines. In this final stage of the k = 4 case, one appears to move
into a heuristic level of higher order where it is necessary to treat
each machine as representing a distinct theorem. [...] The proof
techniques, embodied in programs, are entirely heuristic, while
the inductive proofs, once established by the computer, are com-
pletely rigorous and become the key to the proof of [a] new and
original mathematical results.

A more famous example of this method, is the verification of a huge number
of cases by an IBM 370, implemented by Appel and Haken to prove the four-
color theorem. Also Lehmer used this method for his machine proof on cubic
residues (See Sec. 3.4). This approach is indeed an important technique in
machine proofs, which are the last class of things mentioned by Lehmer, for
which a computer can be used within mathematics ([23, p.119]):
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It is but a simple step from the preceding instance [exhaustive
search] to one kind of mechanical “theorem proving.” This is
not the kind of machine proof with a “look, no hands!” point of
view in which the machine starts from the postulates and proves a
well known elementary theorem, simulating [m.i.] well established
heuristic procedures in its search for a proof. Rather it is a man-
machine cooperative endeavor in which the man furnishes the
best information he has as to the kind of proof most likely to
succeed and the machine attempts to carry out all the steps by
exhaustive search.

As is clear, Lehmer was very much aware of the different ways the computer
can be used in mathematics, anticipating the many ways the computer is
still used today within this context. Besides pointing out the different op-
portunities for the mathematician offered by the computer, Lehmer made
some explicit critical remarks about how and in what kind of situations the
computer should be used. We already know that he attached a great value
to a ‘balanced’ man-computer interaction. The following remark can also be
situated in this context [28, p. 23]:

A lot of the people around here know a machine, the computing
machine is a place where you leave the deck and then there is
a place where you pick up the paper. That’s what a computing
machine is. [...] And they are fighting this machine, trying to get
it to respond to their demands, finally succeeding; that’s what
a machine is to them. They really don’t have any – I guess the
way we say it today: they don’t have a sense of identity with the
machine. We used to have, when we had “hands on” policies, you
know.

The way Lehmer saw computers is very different from the way most people
nowadays see and use their computers. The distance between man and his
computer has only grown even more since Lehmer made this remark: It is
a long way from wiring a computation on the ENIAC to mathematics soft-
ware packages like Mathematica or Maple. To Lehmer, the kind of (growing)
distance between man and machine he already observed in his days (as com-
pared to the way e.g. the ENIAC was used) is connected with the fact that
people take too much for granted what the machine is doing, i.e., how it
works.
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Another important point made by Lehmer, is his recurring emphasis on using
computers for problems that are ‘humanly impractical’ or unfeasible. Only
then it is possible to e.g. prove really new theorems, theorems that could not
have been proven or even been stated by a human being. In this context, it
is very important that the outcome has a certain sense of unpredictability
[22, 141–142]:

I would like to speak briefly of some theorem proving programs
that we have been running in which the human is completely out-
classed in what, I think you will agree, are fair contests. [...] The
novelty of the theorems is guaranteed by the fact that the proofs
are humanly impractical. [...] In casting about for genuine theo-
rems the proofs of which will tax the powers of a human being,
we want to exploit the speed of the machine. This means that
the proof must involve many thousands of steps all sufficiently
different so that the outcome cannot be forecast. We must also
exploit those features of the logical system of the machine that
permit it to supervise and organize its own program. We should
make it proceed in an unpredictable way by laying its own track
ahead of it like a caterpillar tractor. At the same time it should
keep a record of where it has been, so that it can return at a
previous point and branch out along another path whenever it
decides that this is necessary. Humans find this kind of work
difficult even when it occurs in only moderate amounts.

Maybe, one of the most important lessons to be learned from Lehmer’s em-
phasis on man-computer interaction, the significance of using computers for
problems and questions that cannot be tackled by mere human means, as well
as the unpredictability involved in using the computer for such problems, is
that the machine confronts the mathematician with his own mathematical
shortcomings, making it necessary for him to have a little faith in what the
machine has done or can do (to some extent) [23]:

At the end of the run, the machine announces, in words intro-
duced in advance by the programmer, that all cases have been
considered and verified. Having entrusted the machine with this
much responsibility, one must have faith that it performed all its
instructions correctly. Those of little faith will ask: Is this really
mathematics since it cannot be done at the blackboard?
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Indeed, if the machine really produces a result we cannot ‘produce’, one is
faced with the question whether the thing the computer can, but we cannot,
is still mathematics. In this sense, if one is not too skeptical about using the
computer for solving mathematical problems we cannot solve, the computer
has not only changed the way mathematics is practiced but maybe also the
way it is perceived.

5 Conclusion

How can a mere quantitative increase in computing speed give rise to a qual-
itative change in mathematics? Although von Neumann and Lehmer had
different motivations to use the computer within mathematics, it is clear
that these computer pioneers were convinced that the new electronic com-
puter and its computational speed could be used to tackle mathematical
problems in ways that would not have been possible before.
For von Neumann mathematics originates in empirics. To forget about these
empirical roots leads to the degeneration of mathematics into a “disorganized
mass of details and complexities”. Von Neumann’s interest in using comput-
ers for doing mathematics can be understood from this point of view: they
allow for an experimental study of intricate mathematical problems within
physics and other more down-to-earth sciences, like the phenomenon of tur-
bulence. The computer can help to build up an intuition of problems for
which the usual methods of mathematics and physics fall short. This can
e.g. be done by simulating the behaviour of certain mathematical functions
corresponding to some physical phenomenon, that is hard to study within an
experimental physical context and asks for a high computational speed when
studied in a more mathematical-theoretical setting.
Von Neumann’s point of view on mathematics and the use of the computer
to study it, can be contrasted to some extent with Lehmer’s. According to
Lehmer mathematics is in and by itself an experimental science. Connecting
it with e.g. physics or biology was not his main concern, as mathematics
is a universe worth to be explored for its own sake, in a way similar to the
physician studying the “real” world. The computer can help the mathemati-
cian in exploring the universe of numbers: through its speed it allows the
mathematician to really see and observe “the objects at close range”. But
Lehmer goes even further than that: the computer not only gives a more
direct access to certain mathematical objects that are already known to the
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mathematician, be it in an abstract way, but it might even disclose new
ideas, objects and theorems within mathematics that could not have been
“discovered” without the help of the computer.
Nowadays it has become more common (but not very common) to talk about
mathematics as an experimental science, witness the increase in the number
of books and papers on the subject and the foundation of a new journal called
“Experimental Mathematics” in recent years. In this sense, the computer has
really changed mathematics: not only has it given rise to new ideas and re-
sults, but it has also changed our understanding of mathematics itself on a
more philosophical level. Indeed, the fact that more and more people accept
that certain parts of mathematics beg for a more experimental approach is
mostly due to the computer: most results discussed are results that were
found with the aid of the computer’s speed.
In this paper we have situated the modern use of the computer within math-
ematics in its proper historical context, showing that already the first elec-
tronic general-purpose digital computer, the ENIAC, was conceived as the
perfect instrument to study certain (applied and theoretical) mathematical
problems. Although Lehmer and von Neumann were interested in different
problems and applications of the computer, they both emphasized the sig-
nificance of empirical and experimental aspects of mathematics and the fact
that the computer could be used within this context. It is significant to point
out that, if one takes both views together, one gets a relatively complete pic-
ture of the way the computer is nowadays still used within mathematics.13

This kind of usage of the computer gives rise to a whole range of interesting
philosophical questions that beg for more research:

• How different is mathematics from other sciences like physics?

• Has the practice of the mathematician really changed through the com-
puter?

• Can a computer really outrun the mathematician for certain prob-
lems and what does this imply for the (philosophical) notion of proof.

13Of course, the actual implementations and methods used are quite different from the
first ENIAC implementations, given the software and hardware development over the last
60 years. One important we want to mention, and that was not foreseen by Lehmer nor
von Neumann, is the use of computer visualizations, like plots and graphs. These allow
man to observe and study vast amounts of data, because they have been “summarized”
in a form that can be easily accessed by humans.
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I.e.what if some computer would prove a long-standing important con-
jecture, but nobody would really understand the proof.

• How should man-computer interaction be understood within the con-
text of doing computer experiments?

• ...

There are several different approaches to study these related questions. In
our view, one useful way to tackle these questions is the historical approach.
By studying original papers and technical reports from the forties and fifties,
reconstructing original computer programs and analyzing and comparing the
different applications of the older electronic and general-purpose computers
within mathematics, one is able to understand if and how mathematics as
it was and is practiced has really changed through the rise of the computer.14

However, in the back of one’s mind there should be some gratitude for the
machine that has opened our eyes to a new situation in the complex

universe of the integers.
Derrick H. Lehmer, 1969
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